""" .. _Line-at-api:
**LineID_AT** --- Identifies molecular lines in spectra.
--------------------------------------------------------
This module defines the LineID_AT class.
"""
# system imports
import copy
import math
import numpy as np
import numpy.ma as ma
# ADMIT imports
import admit
from admit.AT import AT
from admit.Summary import SummaryEntry
from admit.util import utils, specutil
import admit.util.bdp_types as bt
from admit.bdp.LineList_BDP import LineList_BDP
from admit.bdp.CubeSpectrum_BDP import CubeSpectrum_BDP
from admit.bdp.CubeStats_BDP import CubeStats_BDP
from admit.bdp.PVCorr_BDP import PVCorr_BDP
import admit.util.filter.Filter1D as Filter1D
from admit.util import APlot
from admit.util.Image import Image
from admit.util.Tier1DB import Tier1DB
from admit.util.AdmitLogging import AdmitLogging as logging
from admit.util import SpectralLineSearch
from admit.util import LineData
from admit.util import Segments
# @todo this code does not check upon exit that the LineID list is uniq, the U lines,
# where we only used 3 digits (i.e. 1 MHz accuracy) it would too often find
# duplicate frequencies to 3 digits. 4 would be better, but despite that these
# cases have identical channel ranges, U freq still different.
# Note there were 3 places where %.3f -> %.4f now
# The real fix is a) not allow same interval (U) lines
# b) double check on exit linelist is unique
# See code around duplicate_lines[] where method b) is applied in 1.0.4.
#(see :ref:`tier-one-lineid`).
[docs]class LineID_AT(AT):
""" Task for detecting and identifying spectral lines from input spectra. All
input spectra are assumed to be from the same data set.
See also :ref:`LineID-AT-design` for design documentation.
The produced LineList_BDP contains a list of all spectral lines,
possible identifications, and channel ranges, found in the input spectra.
Additionally a spectral plot with overlayed lines is produced for each input
spectrum.
The line identification algorithm first looks for segments of spectral
line emission. Spectral peaks are then searched for within these regions.
Once spectral peaks are located, patterns are searched for (specifically
patterns of rotation, expansion, and collapse). Each peak is then matched
to ADMIT's *Tier 1* list, which contains the more common molecules and transitions.
If no match is found then the CASA
task *slsearch* or the *splatalogue* database is used to generate a potential
line list based on the peak's frequency and line width. This list is narrowed down
to a single identification by comparing the transition energies,
constituent atoms, and line strength.
If slsearch finds no results then the line is labeled as unidentified.
**Keywords**
**vlsr**: float
VLSR of the source (km/s). Default: -999999.99.
**numsigma**: float
Minimum intensity, in terms of the rms noise of the individual sepctra, to consider a
given channel to not be noise. In the case of CubeStats, where the units of the spectra
are sigma, this refers to the rms noise of the sigma spectra (noise of the noise).
Default: 5.0.
**minchan**: int
Minimum number of consecutive channels above numsigma to consider them
part of a line. Default: 4.
**maxgap**: int
The maximum gap to allow between clusters of channels to consider
them to be separate lines. Default: 3.
**identifylines**: boolean
If True then attempt to identify any detected spectral lines. If False, then just locate
regions of line emission and stop.
Lines are now all marked as "U" (unidentified)
False is useful if the rest frequency/vlsr are not known.
If no vlsr set, this will be forced to be False, if it had been set True.
Default: True.
**allowexotics**: bool
If True then do not limit the molecules that can be detected. If False, do not allow
transitions from molecules with "exotic" atoms to be included in lists. In
this case an exotic atom is one that is uncommon, but possible to be
detected in the right environment. The current list of "exotic" atoms is:
"Al", "Cl", "Mg", "Mn", "F", "Li", "Na", "K", and "Ti".
Default: False.
**recomblevel**: string
What level of recombination line searching is requested. Three
levels are available
+ `off` no recombination lines are allowed in the results.
+ `shallow` only H and He, alpha and beta lines are allowed in the results.
+ `deep` any recombination line is allowed in the results.
Default: "shallow".
**segment**: string
The name of the segment finder algorithm to use; choices are: ASAP
and ADMIT. (see :ref:`asapsegment` and :ref:`admitsegment` for
details of each)
Default: "ADMIT".
**online**: bool
If True then use the online splatalogue interface for searching for transitions. If
False the use the internal CASA slsearch. You must have an internet connection to use
the splatalogue interface.
Default: False.
**smooth**: list
Use this parameter to smooth the input spectrum. Format is a list containing the name of the
smoothing algorithm followed by the parameters for
the algorithm, given in the order they are defined in the documentation.
The algorithms are: boxcar, gaussian, hanning, savgol, triangle, and welch.
All but savgol take a single integer parameter for the width. See :ref:`filter1D` for
details on the individual algorithms and their keywords.
To do no smoothing, set the value to []. Example: ["boxcar", 7] will do
a boxcar smooth with a width of 7.
Default: [].
**recalcnoise**: bool
A boolean to indicate whether the noise should be recalculated after smoothing. True
indicates that the noise should be recalculated, False indicates that the noise of the
unsmoothed spectrum should be used.
Default: False.
**method**: dictionary
A dictionary containing the peak finding algorithm(s) to use as the
keys (string) and dictionary containing the keyword/value arguments
for the algorithm as the value. Available methods are: PeakUtils,
FindPeaksCWT, and PeakFinder (see :ref:`peakutils`, :ref:`findpeaks`,
and :ref:`peakfinder` for the specifics of each). If more than one
algorithm is given then each will be used in turn.
Default: {"PeakFinder" : {"thres" : 0.0,
"min_sep" : self.minchan,
"min_width" : self.minchan}.
**pattern**: str
String indicating if pattern detection is done. Patterns are defined as sets of peaks
which have the same separation which is caused by cloud rotation, expansion, etc. A
detailed explanation is given in the design documentation. Pattern detection works well
so long as there are not too many lines in the spectra. The code can determine whether
this criteria has been met. Available modes are:
+ 'ON' Force pattern find to be on no matter what
+ 'AUTO' Run pattern detection as long as there are not too many lines
+ 'OFF' No pattern detection
Default: "AUTO".
**mode**: string
If more than one peak finding algorithms is given in **method**, how
should the results be interpreted. Available modes are:
+ `ONE` Consider a peak to be valid if it was found by any of the
given methods
+ `TWO` Consider a peak to be valid if it was found by at least two
of the methods. (if only 1 method is specified then this
choice is ignored)
+ `ALL` Consider a peak to be valid if it was detected by all given
methods.(if only 1 method is specified then this choice is ignored)
Default: "ONE".
**tier1width**: float
The width over which to search for Tier 1 lines in km/s. Any lines
detected within this distance of a Tier 1 line will be identified
as that line. Defaults to 300.0 for sources with a VLSR of 150 km/s
and above, and 40.0 for sources with a VLSR below 150 km/s.
**csub**: list
The polynomial order to use for fitting the continuum of CubeStats
and CubeSpec based spectra. All CubeStats based spectra must be
continuum subtracted in order to obtain proper fits (peak, fwhm),
but continuum subtraction for CubeSpectrum based spectra is optional.
The first argument in the list is the order of polynomial to use for
the CubeStats based spectrum and the second is the order of fit to
use for CubeSpec based spectra.
Default: [1, None] (1st order for CubeStat and no fitting for
Cubespec based spectra).
**references**: str
The filename of a references list for optional overplotting in the
LineID plots. This is an ASCII file containing two columns:
one column of frequencies (a float), and one column of a reference
(line, a string). You can specify file references relative to
`$ADMIT`, e.g., references="etc/ngc253_lines.list"
this is preferred to keep scripts portable, but an absolute filename
is perfectly legal.
Default: "".
**iterate**: bool
If True then iterate for both the segment finder and the peak finder
to make them both sensitive to wide and strong narrow lines.
Default: True.
**force**: list of tuples or LineData objects
Force a given channel interval to be a specific line identification.
If force is given, LineID_AT will not try to find any lines in the
specified channel range, but rather take your input as correct.
Format:
[(frequency, UID, formula, name, transition, velocity, startchan, endchan)]
Examples:
[(115.2712, 'CO', 'CO(1-0)', 'carbon monoxide', 'J=1-0', 123.456, 23, 87)]
[(342.998, 'Fred', 'Flintsone', 'unknown', 'unknown', 0, 64, 128),
(238.012, 'My Favorite Molecule', 'N/A', 'N/A', 'N/A', 0, 4, 39)]
[LineData(frequency=115.271, name='Carbon Monoxide', formula='CO',
uid='CO_115.271', transition='1-0', velocity=225.3,
chans=[25, 119])]
Note uid is what is the label used in the plots that LineID_AT creates.
LineData objects can be used instead of a tuple, as the contents of the tuple
is converted to a LineData object internally anyway.
Default: [].
**reject**: list of tuples
Reject a specific line identification. Format: [(name, frequency)],
e.g., [("carbon monoxide", 115.2712), ("carbon monosulfide", 97.981)].
Name is case insensitive. Frequency should be given to enough
precision that it uniquely identifies a line (a comparison is made at the
1 part in 10^6 for matching).
If frequency is None, all lines from the given molecule
will be rejected, i.e. [("carbon monoxide", None)] rejects all
CO transitions, including isotopomers: 12CO, 13CO, C18O etc.
Default: [].
**Input BDPs**
At least one of the following BDPs must be specified.
**CubeSpectrum_BDP**: count: 1 (optional)
Input spectrum, may contain several spectra. Typically the output
of a `CubeSpectrum_AT <CubeSpectrum_AT.html>`_ or
`GenerateSpectrum_AT <GenerateSpectrum_AT.html>`_.
**CubeStats_BDP**: count: 1 (optional)
Alternative input spectrum, as from a
`CubeStats_AT <CubeStats_AT.html>`_.
**PVCorr_BDP**: count: 1 (optional)
Spectrum based on the output of `PVCorr_AT <PVCorr_AT.html>`_.
**Output BDPs**
**LineList_BDP**: count: 1
List of spectral lines.
"""
def __init__(self, **keyval):
keys = {"vlsr" : -999999.99, # see also Ingest_AT
"numsigma" : 5.0,
"minchan" : 4,
"maxgap" : 3,
"identifylines": True,
"allowexotics" : False,
"recomblevel" : "shallow",
"segment" : "ADMIT",
"online" : False,
"smooth" : [],
"recalcnoise" : False,
"method" : {"PeakFinder" : {"thresh" : 0.0}},
"pattern" : "AUTO",
"mode" : "ONE",
"tier1width" : 0.0,
"csub" : [1, None],
"references" : "",
"iterate" : True,
"force" : [],
"reject" : []
}
self.boxcar = True
AT.__init__(self, keys, keyval)
self._version = "1.0.5"
self.set_bdp_in([(CubeSpectrum_BDP, 1, bt.OPTIONAL),
(CubeStats_BDP, 1, bt.OPTIONAL),
(PVCorr_BDP, 1, bt.OPTIONAL)])
self.set_bdp_out([(LineList_BDP, 1)])
def _taskargs(self):
""" generate a task argument string for the summary taskbar """
# @todo duh, why is getkey called again???
# shouldn't we have this in self.
taskargs = ""
identifylines = self.getkey("identifylines")
vlsr = self.getkey("vlsr")
if vlsr != 0.0 and identifylines and vlsr > -999998:
taskargs = taskargs + " vlsr=%g" % vlsr
taskargs = taskargs + " numsigma=" + str(self.getkey("numsigma"))
taskargs = taskargs + " minchan=" + str(self.getkey("minchan"))
taskargs = taskargs + " maxgap=" + str(self.getkey("maxgap"))
if len(self.getkey("smooth")) != 0:
taskargs = taskargs + " smooth=" + str(self.getkey("smooth"))
taskargs = taskargs + " recalcnoise=" + str(self.getkey("recalcnoise"))
taskargs = taskargs + " csub=" + str(self.getkey("csub"))
taskargs = taskargs + " iterate=" + str(self.getkey("iterate"))
taskargs = taskargs + " tier1width="+ str(self.getkey("tier1width"))
taskargs = taskargs + " identifylines=%s" % identifylines
if self.getkey("allowexotics"):
taskargs = taskargs + " allowexotics=True"
taskargs = taskargs + " recomb=" + self.getkey("recomblevel")
return taskargs
[docs] def integritycheck(self):
""" Method to make sure all data have the same frequency axis. This is necessary since
this AT works in both channel and frequency space, thus it must be ensured that the
frequency of channel 1 is the same for all input spectra. This method will throw an
exception if a mismatch is found, as further analysis might be compromised. The
comparison of the frequencies is done at the 1 part in 10^6 level in case they are
recorded at differing precisions.
Parameters
----------
None
Returns
-------
None
"""
# get a list of all good (unmasked) channels in each input spectra
chans = []
freqs = []
for sspec in self.statspec:
chans.append(ma.nonzero(sspec.spec() > -1)[0])
freqs.append(sspec.freq())
for spec in self.specs:
chans.append(ma.nonzero(spec.spec() > -1)[0])
freqs.append(spec.freq())
if self.pvspec is not None:
chans.append(ma.nonzero(self.pvspec.spec() > -1)[0])
freqs.append(self.pvspec.freq())
# if there is only 1 input spectrum, the all is ok by default
if len(chans) == 1:
return
# first check the nearest channel
for chan in chans[0]:
found = True
for i in range(1, len(chans)):
if not chan in chans[i]:
found = False
if found:
ref = freqs[0][chan]
for i in range(1, len(chans)):
if not utils.issameinfreq(ref, freqs[i][chan]):
raise Exception("Frequency axis are not the same in nearest channel.")
if found:
break
# now check the farthest channel
for chan in reversed(chans[0]):
found = True
for i in range(1, len(chans)):
if not chan in chans[i]:
found = False
if found:
ref = freqs[0][chan]
for i in range(1, len(chans)):
if not utils.issameinfreq(ref, freqs[i][chan]):
raise Exception("Frequency axis are not the same in farthest channel.")
if found:
break
[docs] def removepeaks(self, pks, segments):
""" Method to remove peak points from a list if they are not inside of
a segment and merge those that are close to each other
Parameters
----------
pks : list
List of peak points, any units
segments : list
List of segment end points (two for each segment), must have
same units as pks
Returns
-------
List of peak points that are inside of the segments
"""
peaks = []
tol = self.getkey("minchan")
for pk in pks:
for seg in segments:
# only keep peaks that are inside of a segment
# also remove any peaks that are in the first or last channel
# of the spectra, as they are likely false peaks
if (seg[0] <= pk <= seg[1]) and pk >= 1 and pk < len(self.freq) - 1:
peaks.append(pk)
break
npeaks = set()
peaks.sort()
if len(peaks) == 1:
return peaks
# now go through the remaining peaks and combine any that are within tol of each other
for i in range(len(peaks)):
for j in range(i + 1, len(peaks)):
if j < len(peaks) - 1:
if abs(peaks[i] - peaks[j]) < tol \
and abs(peaks[j] - peaks[j + 1]) < tol:
npeaks.add(peaks[j])
break
else:
npeaks.add(peaks[i])
break
else:
if abs(peaks[i] - peaks[j]) < tol:
npeaks.add(peaks[j])
break
else:
npeaks.add(peaks[i])
break
if i == len(peaks) - 1:
if abs(peaks[i] - peaks[i - 1]) > tol:
npeaks.add(peaks[i])
return list(npeaks)
[docs] def findpatterns(self, spec, points, segments):
""" Method to search for patterns in the peaks. Specifically it is
looking for pairs of peaks that are the same distance apart (within
the tolerance). These can be an indicator of rotation/infall/etc.
Only two patterns are allowed to overlap. See the design documentation
for specifics
Parameters
----------
spec : array like
The spectrum that is currently being worked on.
points : numpy array
Listing of peak points
segments : list
List of the segments for the current spectrum
Returns
-------
A Peaks class containing the spectra, segments, peaks and patterns
"""
# initialize the data class
peaks = Peaks(spec=spec, segments=segments)
delfrq = utils.veltofreq(650, spec.freq()[len(spec)/2])
maxsep = delfrq / spec.delta()
ts = np.zeros(len(spec)).astype(float)
ts[0] = 1.
# make a copy of the input points which will be modified as groups are located
singles = copy.deepcopy(points)
# create a 2D array to catalog the distances between every peak
diffs = np.zeros((len(points), len(points)))
# calculate the distance between every peak
for i in range(len(points)):
for j in range(i + 1, len(points)):
diffs[i, j] = abs(points[i] - points[j])
# look for pairs of peaks that are a common distance apart (within the
# given tolerance)
clusters = {}
for i in range(len(points)):
for j in range(i + 1, min(len(points), i + 2)):
# get each distance one at a time and compare it to the rest
diff = diffs[i, j]
dlist = []
# if this is the first time this distance has been found
first = True
for k in range(i + 1):
for l in range(k + 1, min(len(points), k + 2)):
# compare to all other points, skipping itself
if (k == i and l == j) or diffs[k, l] < self.tol / 3.0 \
or abs(spec.spec()[points[k]]) > 2.0 * abs(spec.spec()[points[l]])\
or abs(spec.spec()[points[l]]) > 2.0 * abs(spec.spec()[points[k]]):
continue
# if the distances from two pairs of points are close enough
# add it to the list of clusters
if maxsep > diffs[k, l] > 0.0 and (diff - self.tol / 3.0 < diffs[k, l] < diff + self.tol / 3.0):
# if this is the first time for this distance then add
# both to the list
if first:
dlist.append([i, j])
dlist.append([k, l])
# mark the current point as processed (i.e. set to 0.0)
diffs[k, l] = 0.0
first = False
# if groups of points were detected then add them to the dictionary
if len(dlist) > 0:
clusters[diff] = dlist
# get the actual peak points rather then just indexes
clens = {}
for k, v in clusters.iteritems():
tl = []
for i in v:
tl.append([points[i[0]], points[i[1]]])
clusters[k] = tl
clens[k] = len(tl)
# sort the list to make it easier to process
clist = sorted(clens, key=clens.get)
clist.reverse()
spoints = []
for k in clist:
for i in clusters[k]:
if not i[0] in spoints:
spoints.append(i[0])
if not i[1] in spoints:
spoints.append(i[1])
# single spectral lines
# spectral lines that appear to be in a pattern
for p in spoints:
l = set()
for k in clist:
v = clusters[k]
# collect those that are very close together
for i in v:
if (p - 0.1 < i[0] < p + 0.1) or (p - 0.1 < i[1] < p + 0.1):
l.add(k)
# reduce each of these to a single instance
if len(l) > 1:
for i in clist:
if i in l:
l.remove(i)
break
for i in l:
for j in range(len(clusters[i]) - 1, -1, -1):
if (p - 0.1 < clusters[i][j][0] < p + 0.1) or \
(p - 0.1 < clusters[i][j][1] < p + 0.1):
del clusters[i][j]
if len(clusters[i]) < 2:
del clusters[i]
clist.remove(i)
# remove any that appear multiple times
counts = {}
multi = {}
for k, v in clusters.iteritems():
for i in v:
if i[0] in counts:
multi[i[0]].append(i)
else:
counts[i[0]] = 1
multi[i[0]] = [i]
if i[1] in counts:
multi[i[1]].append(i)
else:
counts[i[1]] = 1
multi[i[1]] = [i]
for k, v in multi.iteritems():
ratios = {}
r = []
if len(v) > 1:
for i in v:
temp = max(peaks.getspecs()[i[0]], peaks.getspecs()[i[1]]) / \
min(peaks.getspecs()[i[0]], peaks.getspecs()[i[1]])
r.append(temp)
ratios[tuple(i)] = temp
best = min(r, key=lambda x: abs(x - 1.0))
for k1, v1 in ratios.iteritems():
if best != v1:
for k2 in clusters.keys():
try:
clusters[k2].remove(list(k1))
except ValueError:
pass
# only allow the two closest patterns for any given point
remove = []
newcounts = {}
counts = set()
for k, v in clusters.iteritems():
counts.add(len(v))
if len(counts) > 0:
counts = sorted(counts)
counts.reverse()
counts = counts[0:min(2, len(counts))]
for k, v in clusters.iteritems():
if not len(v) in counts:
remove.append(k)
continue
else:
newcounts[k] = len(v)
for i in v:
for j in i:
try:
singles.remove(j)
except ValueError:
pass
for i in remove:
del clusters[i]
# report the results
if len(clusters.keys()) > 0:
if len(clusters.keys()) > 1:
exp = "s"
pre = ""
else:
exp = ""
pre = " a"
msg = "Found %s potential pattern%s with%s separation%s of" % (len(clusters), exp, pre, exp)
summary = ""
for k in clusters.keys():
summary += " %.1f," % (2. * abs(utils.freqtovel(spec.freq()[len(spec)/2], spec.freq()[len(spec)/2] - spec.freq()[len(spec)/2 - k])))
summary = summary[:-1] + " km/s"
logging.info(msg + summary)
peaks.singles = singles
peaks.pairs = clusters
peaks.counts = newcounts
return peaks
[docs] def narrowpossibles(self, possible):
""" Method to take the possible identifications of a spectral line and
narrow it down to one possibility. This is done by comparing the
upper state energies of the transitions, masses, and isotope counts.
NEED DETAILS
Parameters
----------
possibles : list
A list containing all of the possible identifications for the
line
Returns
-------
The listing of the most likely identification
"""
# now sort through the contents, find the one with the lowest upper state
# energy
# if we have too many non-standard isotopes then we should reconsider
# for C the standard isotope is 12 and the non-standard ones are 13 and 14
for j in range(len(possible) - 1, -1, -1):
# one non-standard iostope is ok for higher mass molecules
if possible[j].getkey("isocount") > 0 and possible[j].getkey("mass") > 50.0 and len(possible) > 1:
del possible[j]
# two non-standard isotopes is ok for middle weight molecules
elif possible[j].getkey("isocount") > 1 and possible[j].getkey("mass") > 31.0 and len(possible) > 1:
del possible[j]
# three or more non-standard isotopes is only ok for the smallest molecules
elif possible[j].getkey("isocount") > 2 and possible[j].getkey("mass") > 14.0 and len(possible) > 1:
del possible[j]
# defaults for searches
peakmass = 0
lowmass = 100000000
lmindx = -1
lowen = 100000.0
leindx = -1
# find out which one(s) have the lowest energy, and highest and lowest mass
for j in range(len(possible)):
if possible[j].getupperenergy() < lowen:
lowen = possible[j].getupperenergy()
leindx = j
if possible[j].getkey("mass") > peakmass:
peakmass = possible[j].getkey("mass")
if possible[j].getkey("mass") < lowmass:
lowmass = possible[j].getkey("mass")
lmindx = j
# if mass is too big compared to others, then we likely have another candidate
if (possible[leindx].getkey("mass") > 1.6 * possible[lmindx].getkey("mass"))\
and (possible[lmindx].getkey("linestrength") > 1.0):
# ignore ions
if "+" in possible[lmindx].getkey("formula"):
pass
else:
lowen = possible[lmindx].getupperenergy()
leindx = lmindx
# otherwise we just go with lowest energy one
lname = possible[leindx].getkey("formula")
qnum = possible[leindx].getkey("transition")
# loop through all possibilities and eliminate those with much different
# energy and name (this collects transitions with hyperfine components)
for k in range(len(possible) - 1, -1, -1):
if k == leindx:
continue
if (not(utils.iscloseinE(lowen, possible[k].getupperenergy()) and possible[k].getkey("formula") == lname)) \
or (lowen == possible[k].getupperenergy() and possible[k].getkey("formula") == lname and possible[k].getkey("transition") == qnum):
del possible[k]
peakls = 0.0
lsindx = 0
# of the remaining ones (all from the same molecule), pick the one with
# the highest line strength
for j in range(len(possible)):
if possible[j].getkey("linestrength") > peakls:
peakls = possible[j].getkey("linestrength")
lsindx = j
if len(possible) > 1:
possible.insert(0, possible[lsindx])
del possible[lsindx + 1]
for p in possible:
p.setkey("blend", self.blendcount)
self.blendcount += 1
else:
possible[0].setkey("blend", 0)
return possible
[docs] def checkreject(self, lines):
""" Method to check possible lines against the list of rejected lines. Returns
an edited version of the input data, removing those that match the reject list.
Parameters
----------
lines : list or dict
The line identifications to check for rejects.
Returns
-------
Data in the same form as input, with rejected lines removed
"""
if isinstance(lines, list):
results = []
for res in lines:
found = False
for rej in self.reject:
if res.name.upper() == rej[0].upper():
if rej[1] is None:
found = True
break
if utils.issameinfreq(res.getkey("frequency"), rej[1]):
found = True
break
if not found:
results.append(res)
elif isinstance(lines, dict):
results = {}
for freq, res in lines.iteritems():
if isinstance(res, list):
tempr = []
for r in res:
found = False
for rej in self.reject:
if r.name.upper() == rej[0].upper():
if rej[1] is None:
found = True
break
if utils.issameinfreq(r.getkey("frequency"), rej[1]):
found = True
break
if not found:
tempr.append(r)
results[freq] = tempr
else:
found = False
for rej in self.reject:
if res.name.upper() == rej[0].upper():
if rej[1] is None:
found = True
break
if utils.issameinfreq(res.getkey("frequency"), rej[1]):
found = True
break
if not found:
results[freq] = res
else:
raise Exception("Impproper format for input lines, it must be a list or dictionary not a %s." % (type(lines)))
return results
[docs] def generatepossibles(self, frq):
""" Method to generate a list of possible molecular identifications
given a frequency range. The methold calls slsearch and converts
the output into a list.
Parameters
----------
frq : list, length 2
The frequency range to search, it is just passed to slsearch,
and no error checking is done.
Returns
-------
A list containing the possible identifications. Each item in the
list is a list itself containing the chemical formula, chemical
name, rest frequency, transition quantum numbers, line strength,
lower state energy, and upper state energy, in this order.
"""
frq = self.checkforcefreqs(frq)
if frq is None:
return []
sls = SpectralLineSearch(self.getkey("online"), self.tier1freq)
kw = {"exclude" : ["atmospheric", "potential", "probable"],
"include_only_nrao" : True,
"line_strengths": ["ls1", "ls2"],
"energy_levels" : ["el2", "el4"],
"fel" : True
}
results = sls.search(min(frq), max(frq), self.getkey("recomblevel").upper(),
self.getkey("allowexotics"), **kw)
results = self.checkreject(results)
for r in results:
print "PJT",r
return results
[docs] def gettier1(self):
""" Method to get the Tier 1 transitions that may be in the window.
These transitions are stored in a small sqlite3 database inside of
Admit. The molecules in the database are:
CO all transitions
13CO all transitions
C18O all transitions
C17O all transitions
HCO+ all transitions
H13CO+ all transitions
DCO+ all transitions
HDO all transitions
CCH all transitions
CN excluding weakest lines
13CN excluding weakest lines
HCN all transitions
DCN all transitions
H13CN all transitions
HN13C all transitions
HNC all transitions
N2H+ all transitions
H2CO excluding weakest lines
CS all transitions
SiO all transitions
SO all transitions
HC3N excluding weakest lines
Parameters
----------
None
Returns
-------
tuple of dictionaries
The first contains a list of single transitions and the
strongest component of any lines with hyperfine splitting, the
second contains a listing of all possible hyperfine components,
lined with the main components in the first list.
"""
lines = {}
hfs = {}
# connect to the database via the handler class
# and get all possibilities based on the frequency end points of the window
t1db = Tier1DB()
t1db.searchtransitions(freq=[ma.min(self.freq), ma.max(self.freq)])
results = t1db.getall()
count = 0
# go through the main results
for line in results:
lines[count] = line
# if the line has additional hyperfine components then get them from the
# database and add them to the list
if line.getkey("hfnum") > 0:
hfs[count] = []
t1db.searchhfs(line.getkey("hfnum"))
hfsresults = t1db.getall()
for hfr in hfsresults:
hline = copy.deepcopy(line)
hline.setkey("frequency", hfr.getkey("frequency"))
hline.setkey("uid", utils.getplain(line.getkey("formula")) + "_%.5f" % hfr.getkey("frequency"))
hline.setkey("linestrength", hfr.getkey("linestrength"))
hline.setkey("transition", str(hfr.getkey("transition")))
hfs[count].append(hline)
count += 1
# close the handle
t1db.close()
# return the main components and the associated hyperfine lines
lines = self.checkreject(lines)
hfs = self.checkreject(hfs)
return lines, hfs
[docs] def getpeaks(self, method, args, spec, segments, iterate=False):
""" Method to get the peaks from the input spectrum. It calls the requested
peak finder and can iterate over the inputs to find both wider weaker lines as
well as stronger narrower ones. The iteration is done by conserving the product of
numsigma * minchan. The first run keeps both values as they were input, subsequent
runs decrease the minchan by 1 and increase numsigma so that the product is conserved.
This is repeated as long as minchan > 1. The results of the iterations are merged together
and a single list of peaks is returned.
Parameters
----------
method : str
The peak finding method to use
args : dict
The arguments to send to the peak finder
spec : array like
The input spectrum which is searched for peaks
segments : list
A list of the previously detected segments
iterate : bool
If True then iterate over the minchan ans threshold to detect narrow strong lines.
Default : False
Returns
-------
List of the peak points in channel space
"""
wdth = []
pks = []
area = float(args["min_width"]) * args["thresh"]
initwidth = args["min_width"]
initthresh = args["thresh"]
for i in range(1, 6):
wdth.append(2*i + 1)
for s in segments:
temppks = []
args["min_width"] = initwidth
args["thresh"] = initthresh
last = 0
curpk = spec[s[0]:s[1]+1].max()
# only run the boxcar smoothing if the segment is wide enough, this avoids suppressing
# narrow lines
if self.boxcar and abs(s[0] - s[1]) > 6:
for i in range(len(wdth)):
fltr = Filter1D.Filter1D(spec, "boxcar", **{"width": wdth[i]})
spec3 = fltr.run()
spec3 *= math.sqrt(float(wdth[i]))
newpk = spec3[s[0]:s[1]+1].max()
if newpk > curpk and wdth[i] <= 0.5*(s[1]-s[0]):
curpk = newpk
last = i
else:
break
fltr = Filter1D.Filter1D(spec, "boxcar", **{"width": wdth[last]})
spec3 = fltr.run()
args["spec"] = spec3[max(s[0] - 2, 0): min(s[1] + 3, len(spec3) - 1)]
else:
args["spec"] = spec[max(s[0] - 2, 0): min(s[1] + 3, len(spec) - 1)]
while (args["min_width"] > 1 and iterate) or (args["min_width"] > 0 and not iterate):
pf = utils.getClass("util.peakfinder", method, args)
pk = pf.find() + float(max(s[0] - 2, 0))
for p in pk:
if s[0] <= p <= s[1]:
temppks.append(p)
if not iterate:
break
args["min_width"] -= 1
args["thresh"] = area / args["min_width"]
drop = set()
for i in range(len(temppks)):
for j in range(i + 1, len(temppks)):
if j not in drop and abs(temppks[i] - temppks[j]) < initwidth:
drop.add(j)
for i in range(len(temppks)):
if i not in drop:
pks.append(temppks[i])
pks.sort()
return pks
[docs] def counthfclines(self, chfc, shfc, peak, wiggle, offset, hflines):
""" Method to count the number of hyperfine lines that match a given offset.
The offsets are determined by the wings of a cluster. This returns
the number of hyperfine components that match emission features.
Parameters
----------
chfc : dict
Dictionary containing the channel ranges and other line attributes
of clusters
shfc : dict
Dictionary containing the channel ranges and other line attributes
of single lines
peak : Peaks instance
Peaks instance used to calculate channel ranges
wiggle : float
The amount of wiggle room to allow for a match in channel space
offset : float
The offset to use for the calculations
hflines : list
List of all possible hyperfine components
Returns
-------
Int, the number of matches
"""
count = 0
for hfl in hflines:
# get the expected channel range for the hyperfine component for the
# given wiggle room and offset
rng = [peak.getchan(hfl.getkey("frequency") - wiggle - offset), peak.getchan(hfl.getkey("frequency") + wiggle - offset)]
low = min(rng)
hi = max(rng)
found = False
# now look for matches in clusters
for chan in chfc.values():
if low <= chan[0][0] <= hi or low <= chan[0][1] <= hi or \
chan[0][0] <= low <= chan[0][1]:
count += 1
found = True
break
# if the current hyperfine component is already located then stop searching
if found:
continue
# now search the single lines
for chan in shfc.values():
if low <= chan[0][0] <= hi or low <= chan[0][1] <= hi or \
chan[0][0] <= low <= chan[0][1]:
count += 1
break
# return the results
return count
[docs] def taghfclines(self, chfc, shfc, peak, wiggle, offset, hflines):
""" Method to identify hyperfine components in a given spectrum. If components
are blended then the strongest line (based on transition line strength)
is added to the transitions and all others are added to the blended lines.
All are connected by the blend number.
Parameters
----------
chfc : dict
Dictionary containing the channel ranges and other line attributes
of clusters
shfc : dict
Dictionary containing the channel ranges and other line attributes
of single lines
peak : Peaks instance
Peaks instance used to calculate channel ranges
wiggle : float
The amount of wiggle room to allow for a match in channel space
offset : float
The offset to use for the calculations
hflines : list
List of all possible hyperfine components
Returns
-------
Tuple containing the identification(s) and blend(s)
"""
identifications = {}
blends = []
possibleblends = {}
# combine the input dictionaries
combhfc = {}
combhfc.update(chfc)
combhfc.update(shfc)
for hfl in hflines:
# get the channel ranges for the given offset and wiggle room
rng = [peak.getchan(hfl.getkey("frequency") - wiggle + offset), peak.getchan(hfl.getkey("frequency") + wiggle + offset)]
low = min(rng)
hi = max(rng)
# look to see if any match, if one does add it to the dictionary
for freq, chan in combhfc.iteritems():
if low < chan[0][0] <= hi or low <= chan[0][1] <= hi or \
chan[0][0] <= low <= chan[0][1]:
hfline = copy.deepcopy(hfl)
hfline.setfreqs([peak.getfreq(chan[0][0]), peak.getfreq(chan[0][1])])
if freq in possibleblends:
possibleblends[freq].append(hfline)
else:
possibleblends[freq] = [hfline]
break
# need to find where main line belongs
fc = set()
fs = set()
for freq, ident in possibleblends.iteritems():
# if there is only 1 line then just add it to the identifications
if len(ident) == 1:
hfline = copy.deepcopy(ident[0])
hfline.setkey({"velocity" : float(utils.freqtovel(freq, freq - hfline.getkey("frequency")) + self.vlsr),
"chans" : [self.chan[self.chan.index(combhfc[freq][0][0])],
self.chan[self.chan.index(combhfc[freq][0][1])]],
"freqs" : [self.freq[self.chan.index(combhfc[freq][0][0])],
self.freq[self.chan.index(combhfc[freq][0][1])]],
"peakintensity" : float(combhfc[freq][1]),
"fwhm" : float(combhfc[freq][2]),
"peakrms" : float(combhfc[freq][3]),
"peakoffset" : float(utils.freqtovel(freq, freq - hfline.getkey("frequency"))),
"blend" : 0})
identifications[freq] = hfline
# if there are several then find the strongest and add the rest to the blends
else:
maxstr = 0.0
mindx = -1
# find the strongest
for i in range(len(ident)):
if ident[i].getkey("linestrength") > maxstr:
maxstr = ident[i].getkey("linestrength")
mindx = i
if mindx == -1:
mindx = 0
hfl = copy.deepcopy(ident[mindx])
poffset = utils.freqtovel(freq, freq - hfl.getkey("frequency"))
# add the strongest to the identifications, connect it to the other(s) via
# the blendcount parameter
hfl.setkey({"velocity" : float(poffset + self.vlsr),
"chans" : [self.chan[self.chan.index(combhfc[freq][0][0])],
self.chan[self.chan.index(combhfc[freq][0][1])]],
"freqs" : [self.freq[self.chan.index(combhfc[freq][0][0])],
self.freq[self.chan.index(combhfc[freq][0][1])]],
"peakintensity" : float(combhfc[freq][1]),
"fwhm" : float(combhfc[freq][2]),
"peakrms" : float(combhfc[freq][3]),
"peakoffset" : float(offset),
"blend" : self.blendcount})
identifications[freq] = hfl
del ident[mindx]
# add the others to the blends
for hfl in ident:
hfline = copy.deepcopy(hfl)
hfline.setkey({"velocity" : float(utils.freqtovel(freq, freq - hfline.getkey("frequency")) + self.vlsr),
"chans" : [self.chan[self.chan.index(combhfc[freq][0][0])],
self.chan[self.chan.index(combhfc[freq][0][1])]],
"freqs" : [self.freq[self.chan.index(combhfc[freq][0][0])],
self.freq[self.chan.index(combhfc[freq][0][1])]],
"peakintensity" : 0.0,
"fwhm" : 0.0,
"peakrms" : 0.0,
"peakoffset" : float(offset),
"blend" : self.blendcount})
blends.append(hfline)
self.blendcount += 1
# remove any identified lines from the peaks instance
for f, v in peak.fcenters.iteritems():
for idn in ident:
if idn.getfstart() <= f <= idn.getfend():
fc.add(f)
if idn.getfstart() <= v[1][0] <= idn.getfend():
v[1][0] = 0.0
if idn.getfstart() <= v[1][1] <= idn.getfend():
v[1][1] = 0.0
for f, v in peak.fcenters.iteritems():
if v[1][0] == 0.0:
if v[1][1] != 0.0:
peak.fsingles.append(v[1][1])
fc.add(f)
elif v[1][1] == 0.0:
peak.fsingles.append(v[1][0])
fc.add(f)
for i in range(len(peak.fsingles)):
for idn in ident:
if idn.getfstart() <= peak.fsingles[i] <= idn.getfend():
fs.add(i)
# remove any already identified clusters and peaks
for f in fc:
del peak.fcenters[f]
for f in fs:
peak.fsingles[f] = 0.0
return identifications, blends
[docs] def gettier1line(self, chans):
""" Method to return a line from the detected tier1 list. The line is found
by looking for an entry which is between the end points of the input segment.
Parameters
----------
chans : list
Two element list of the start and end channels to search over
Returns
-------
A listing of any tier1 line which overlaps with the segment.
"""
for t1 in self.tier1list:
if t1.getstart() <= chans[0] <= t1.getend() and t1.getstart() <= chans[1] <= t1.getend():
return copy.deepcopy(t1)
[docs] def checkforcefreqs(self, frq):
""" Method to check that detected segments do not overlap with any force segments in
frequency space
Parameters
----------
segs : list
List of the segments (in channel space) to check
Returns
-------
List of segments that do not overlap with force segments
"""
reverse = self.freq[0] > self.freq[-1]
for fr in self.forcefreqs:
if fr[0] <= frq[0] <= fr[1] and fr[0] <= frq[1] <= fr[1]:
return None
if fr[0] <= frq[0] <= fr[1]:
if reverse:
frq[0] = min(fr[1] - 0.0001, self.freq[0])
else:
frq[0] = min(fr[1] - 0.0001, self.freq[-1])
if fr[0] <= frq[1] <= fr[1]:
if reverse:
frq[1] = max(self.freq[-1], fr[0] + 0.0001)
else:
frq[1] = max(self.freq[0], fr[0] + 0.0001)
return frq
[docs] def checkforcesegs(self, segs):
""" Method to check that detected segments do not overlap with any force segments in
channel space
Parameters
----------
segs : list
List of the segments (in channel space) to check
Returns
-------
List of Segments objects that do not overlap with force segments
"""
finalsegs = Segments(nchan=len(self.freq))
for seg in segs:
found = False
for ch in self.forcechans:
if ch[0] <= seg[0] <= ch[1] and ch[0] < seg[1] < ch[1]:
found = True
break
if ch[0] <= seg[0] <= ch[1]:
seg[0] = min(ch[1] + 1, self.chan[-1])
if ch[0] <= seg[1] <= ch[1]:
seg[1] = max(0, ch[0] - 1)
if not found:
finalsegs.append(seg)
return finalsegs
[docs] def checkforcechans(self, peaks, chs):
""" Method to check that no non-force segments overlap with force segments
Parameters
----------
peaks : Peaks instance
Instance of the Peaks class containing all of the line peaks
chs : list
List containing a pair of entries for the beginning and ending
channel numbers for the segment.
Returns
-------
List, containing a pair of entries, the start and end channels for the
segment, modified so that it does not overlap any tier1 segments.
"""
chans = copy.deepcopy(chs)
for ch in self.forcechans:
if ch[0] <= chans[0] <= ch[1] and ch[0] <= chans[1] <= ch[1]:
return None
if ch[0] <= chans[0] <= ch[1]:
chans[0] = min(ch[1] + 1, len(peaks) - 1)
if ch[0] <= chans[1] <= ch[1]:
chans[1] = max(0, ch[0] - 1)
return chans
[docs] def checktier1chans(self, peaks, chs):
""" Method to check that no non-tier1 segments overlap with tier1 segments
in the same spectrum.
Parameters
----------
peaks : Peaks instance
Instance of the Peaks class containing all of the line peaks
chs : list
List containing a pair of entries for the beginning and ending
channel numbers for the segment.
Returns
-------
List, containing a pair of entries, the start and end channels for the
segment, modified so that it does not overlap any tier1 segments.
"""
chans = copy.deepcopy(chs)
for ch in self.tier1chans:
if ch[0] <= chans[0] <= ch[1] and ch[0] <= chans[1] <= ch[1]:
return None
if ch[0] <= chans[0] <= ch[1]:
chans[0] = min(ch[1] + 1, len(peaks) - 1)
if ch[0] <= chans[1] <= ch[1]:
chans[1] = max(0, ch[0] - 1)
return chans
[docs] def checkfit(self, peaks, peak, params, freq, segment):
""" Method to determine if the given Gaussian fit paramters exceed 1.5 times the intensity
of the peak channel, and are contained within the encompassing segment. Adjustments are
are made if necessary.
Parameters
----------
peaks : Peaks instance
The Peaks instance used to supply the spectrum and segments
peak : float
The peak intensity within the segment
params : array like
The list of Gaussian parameters from a fit (peak, center (offset from freq), FWHM)
freq : float
The central frequency of the fit.
segment : list
Segment containing the peak
Returns
-------
Tuple containing the corrected fit parameters
"""
if abs(params[0]) > 1.5 * abs(peak):
params[0] = peak
if not ((peaks.getfreq(segment[0]) < freq + params[1] < peaks.getfreq(segment[1])) or\
(peaks.getfreq(segment[0]) > freq + params[1] > peaks.getfreq(segment[1]))):
params[1] = 0.0
if abs(peaks.getfreq(segment[0]) - peaks.getfreq(segment[1])) < params[2]:
params[2] = abs(peaks.getfreq(segment[0]) - peaks.getfreq(segment[1]))
return params
[docs] def identify(self, peaks, noise, tier1, hfs, isstats=False, ispvcorr=False):
""" Method to identify lines, given their peak locations. This is a
complex method that works as follows:
- search for any Tier 1 lines in the spectrum
+ start with any detected patterns
+ then search for individual lines
+ any peak detected within 'tier1width' of the expected rest
frequency of the Tier 1 line will be marked as being from that
transition (defaults to 300 km/s for a source vlsr > 150 and 40 km/s
for a source vlsr <= 150 km/s)
+ if an identified line has hyperfine components, search for them
before proceeding to the next transition in the Tier 1 list
- search for any remaining transitions in the spectrum
+ start with any detected patterns
+ then search any remaining single peaks
- when working with detected (really suspected) patterns both the
emission/absorption peaks and the central frequency are searched
for, since the pattern may not be due to rotation, but may be
due to emission from multiple related transitions (internal molecular
rotation)
- any detected lines in a given spectrum will be compared to detected peaks
of any other spectra. Specifically this helps to identify transitions
due to source rotation where the CubeStats spectrum see all of the emission
(both red and blue shifted peaks), but a CubeSpectrum may ony see the red peak,
this red only peak will be correctly identified because it matches part of the
pattern from the CubeStats input.
Parameters
----------
peaks : Peaks instance
A class containing both the sinlge peaks and those which may be
grouped by a common offset
noise : float
The rms noise of the root spectrum
tier1 : dict
Dictionary containing any Tier 1 lines located in the band, rest
frequency is the key, transition data are the values
hfs : dict
Dictionary of hyperfine components that correspond to any lines
in tier1.
isstats : bool
Whether or not a CubeStats based spectrum is being processed.
Default : False
ispvcorr : bool
Whether or not a PVCorr based spectrum is being processed.
Specifically this disables the use of velocity offsets.
Default: False
Returns
-------
List of the line identifications
"""
identifications = {} # list for all identified lines
blends = []
foundcomplex = []
slen = len(peaks.fsingles)
fwidth = -1.0
# do the Tier 1 search first
if len(tier1) > 0:
if len(hfs) > 0:
# first generate channel ranges for all lines and clusters
chfc = {}
shfc = {}
for freq, v in peaks.fcenters.iteritems():
parameters = {0: [0, 0, 0, [100000, -1000000]],
1: [0, 0, 0, []],
2: [0, 0, 0, []]}
width = abs(v[1][0] - v[1][1]) / 2.0
chan = self.getchannels(peaks, noise, cid=peaks.getchan(freq))
if chan is None:
continue
peak = peaks.getspecs()[peaks.getchan(freq)]
pkrms = peak / noise
if chan[0] is None or chan[1] is None or abs(chan[0] - chan[1]) < 4:
popt = [peak, 0.0, abs(peaks.getfreq(chan[0]) - peaks.getfreq(chan[1]))]
else:
if chan[0]==chan[1]:
fwidth = abs(peaks.getfreqs()[chan[0]]-peaks.getfreqs()[chan[0]+1])
# get a better number for the FWHM
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[chan[0]:chan[1] + 1] - freq,
peaks.getspecs()[chan[0]:chan[1] + 1],
par=[peak, 0.0, width],width=fwidth)
popt = self.checkfit(peaks, peak, popt, freq, peaks.getsegment(peaks.getchan(freq)))
parameters[0] = [peak, popt[1], abs(popt[2]),
peaks.getsegment(peaks.getchan(freq))]
if v[0]:
mpk = max(abs(parameters[0][0]), abs(parameters[1][0]),
abs(parameters[2][1]))
pkrms = mpk
if not isstats:
pkrms = mpk / noise
tfwhm = utils.freqtovel(freq, abs(parameters[0][2]) * 2.355)
chfc[freq] = (parameters[0][3], peak, tfwhm, pkrms)
for i in [0, 1]:
peakw = peaks.getspecs()[peaks.getchan(v[1][i])]
seg = peaks.getsegment(peaks.getchan(v[1][i]))
if seg is None:
parameters[i + 1] = [0, 0, 0, [0, 0]]
else:
if seg[0] is None or seg[1] is None or abs(seg[0] - seg[1]) < 4:
popt = [peakw, 0.0, abs(peaks.getfreq(seg[0]) - peaks.getfreq(seg[1]))]
else:
[st, en] = seg
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - v[1][i],
peaks.getspecs()[st:en + 1],
par=[peakw, 0.0, width], width=fwidth)
popt = self.checkfit(peaks, peakw, popt, v[1][i], peaks.getsegment(peaks.getchan(v[1][i])))
parameters[i + 1] = [peakw, popt[1], abs(popt[2]),
peaks.getsegment(peaks.getchan(v[1][i]))]
tfwhm = utils.freqtovel(freq, abs(parameters[i + 1][2]) * 2.355)
pkrms = parameters[i + 1][0]
if not isstats:
pkrms /= noise
chfc[parameters[i + 1][1] + v[1][i]] = (parameters[i + 1][3], parameters[i + 1][0], tfwhm, pkrms)
for freq in peaks.fsingles:
chans = self.getchannels(peaks, noise, sid=peaks.getchan(freq))
if chans is None:
continue
st = int(max(0, peaks.getchan(freq) - 10))
en = int(min(len(peaks), peaks.getchan(freq) + 10))
width = abs(peaks.getfreq(st) - peaks.getfreq(en))
peak = peaks.getspecs()[peaks.getchan(freq)]
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
print "PJT1",fwidth
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - freq,
peaks.getspecs()[st:en + 1], par=[peak, 0.0,
width], width=fwidth)
fcenter = freq + popt[1]
fwhm = utils.freqtovel(freq, abs(popt[2]))
pkrms = peak
if not isstats:
pkrms = peak / noise
shfc[freq] = (peaks.getsegment(peaks.getchan(freq)), peak, fwhm, pkrms)
# determine what width to use for uncertainty
if abs(self.vlsr) > 150.0:
width = 300.0
else:
width = 40.0
if self.getkey("tier1width") != 0.0:
width = self.getkey("tier1width")
fwidth = utils.veltofreq(width, peaks.centerfreq())
# go through each possible transition and see if we have a line that is a possibility
for trans, t1 in tier1.iteritems():
todel = set()
found = False
# go through all detected clusters
skip = []
noskip = {}
doskip = False
for k in peaks.fcenters.keys():
if t1.getkey("frequency") - fwidth < k < t1.getkey("frequency") + fwidth:
doskip = True
noskip[abs(k - t1.getkey("frequency"))] = k
else:
skip.append(k)
if len(noskip) > 1:
minval = noskip[min(noskip.keys())]
for i in noskip.values():
if i != minval:
skip.append(i)
# search though the clusters first
for k in peaks.fcenters.keys():
if k not in peaks.fcenters or (doskip and k in skip):
continue
v = peaks.fcenters[k]
# center peak
centerpeak = v[0]
wings = v[1]
cent = {"lines": {},
"blend": []}
left = {"lines": {},
"blend": []}
right = {"lines": {},
"blend": []}
ccount = 0
lcount = 0
rcount = 0
# parameters hold the values of line fits and start and end channels
# peak intensity, frequency offset, width in GHz, start chan, end chan
parameters = {0: [0, 0, 0, [100000, 0]],
1: [0, 0, 0, []],
2: [0, 0, 0, []]}
delta = abs(peaks.getfreqs()[peaks.getchan(k)] -
peaks.getfreqs()[peaks.getchan(k) - 1])
# frequencies of offset lines
# rought width
twidth = abs(wings[0] - wings[1]) / 2.0
width = twidth
if centerpeak:
# calculate starting and ending channels to extract for the line fitting
# cut will will trace the entire line, down to the cutoff level,
# keeping in mind the window edges
seg = peaks.getsegment(peaks.getchan(k))
if seg is None:
parameters[0] = [0, 0, 0, [0, 0]]
width = 0
else:
[st, en] = seg
peak = peaks.getspecs()[peaks.getchan(k)]
hpk = peak / 2.0
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
# get a better number for the FWHM
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - k,
peaks.getspecs()[st:en + 1],
par=[peak, 0.0, width], width=fwidth)
width = abs(popt[2])
parameters[0] = [peak, popt[1], abs(popt[2]),
peaks.getsegment(peaks.getchan(k))]
for i in [0, 1]:
peakw = peaks.getspecs()[peaks.getchan(wings[i])]
seg = peaks.getsegment(peaks.getchan(wings[i]))
if seg is None:
parameters[i + 1] = [0, 0, 0, [0, 0]]
else:
[st, en] = seg
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - wings[i],
peaks.getspecs()[st:en + 1],
par=[peakw, 0.0, twidth], width = fwidth)
parameters[i + 1] = [peakw, popt[1], abs(popt[2]),
peaks.getsegment(peaks.getchan(wings[i]))]
# check the center frequency first
closest = -1.
distance = 100000.
for frq in peaks.fcenters.keys():
if t1.getkey("frequency") - fwidth <= frq <= t1.getkey("frequency") + fwidth:
if abs(t1.getkey("frequency") - frq) < distance:
closest = frq
distance = abs(t1.getkey("frequency") - frq)
if closest > 0.0:
k = closest
found = True
# if the line has hyperfine components then there is a lot of work to do
if trans in hfs:
# how much jitter do we allow ##### should be a parameter of the AT
wiggle = 0.01 * fwidth
offset = k - t1.getkey("frequency")
hflines = sorted(hfs[trans], key=lambda x: x.getkey("frequency"))
hflines.reverse()
# figure out all the possible main offsets
ldiff = wings[0] - t1.getkey("frequency")
rdiff = wings[1] - t1.getkey("frequency")
poffset = utils.freqtovel(k, k - t1.getkey("frequency"))
mpk = max(abs(parameters[0][0]), abs(parameters[1][0]),
abs(parameters[2][1]))
pkrms = mpk
if not isstats:
pkrms = mpk / noise
st = min(parameters[0][3][0], parameters[1][3][0], parameters[2][3][0])
en = max(parameters[0][3][1], parameters[1][3][1], parameters[2][3][1])
tfwhm = utils.freqtovel(k, abs((wings[1] + parameters[2][2]) -
(wings[0] - parameters[1][2])))
ccount += 1
# see what we get if we assume wing 0 is the main line
if t1.getkey("frequency") - fwidth < wings[0] < t1.getkey("frequency") + fwidth:
lcount += 1 + self.counthfclines(chfc, shfc, peaks, wiggle, ldiff,
hflines)
# see what we get if wing 1 is the main line
if t1.getkey("frequency") - fwidth < wings[1] < t1.getkey("frequency") + fwidth:
rcount += 1 + self.counthfclines(chfc, shfc, peaks, wiggle, rdiff,
hflines)
# see what we get if the center is the main line
# if there is no central peak
if not centerpeak:
# see who had the best matches
if max(lcount, rcount, 1) == 1:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
offset, hflines + [t1])
elif lcount == rcount:
if abs(ldiff) < abs(rdiff):
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
ldiff, hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
rdiff, hflines + [t1])
elif lcount > rcount:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
ldiff, hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
rdiff, hflines + [t1])
cent["lines"].update(tempid)
if len(tempid) == 0:
continue
cent["blend"] += tblend
# if there is a center peak
else:
ccount += self.counthfclines(chfc, shfc, peaks, wiggle, offset,
hflines)
m = max(ccount, lcount, rcount) # highest number of matches
offset = abs(offset)
# minimum offset value
mo = min(abs(offset), abs(ldiff), abs(rdiff))
# if all have only 1 possible, then go with the center
if ccount == rcount == lcount == 1:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
offset, hflines + [t1])
# if all have the same number of possibles, then go with the one that is closest to
# the expected rest frequency
elif ccount == rcount == lcount:
if mo == offset:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
offset, hflines + [t1])
elif mo == rdiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
rdiff, hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
ldiff, hflines + [t1])
# if the center has the most possibilities
elif m == ccount:
# if it has the same as wing 1 then decide by offset
if ccount == rcount:
if offset < rdiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, offset,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, rdiff,
hflines + [t1])
# if it has the same as wing 0 then decide by offset
elif ccount == lcount:
if offset < ldiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, offset,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, ldiff,
hflines + [t1])
# otherwise just go with the center
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
offset, hflines + [t1])
# if wing 1 has the most possibles
elif m == rcount:
# if it has the same as the center then decide by offset
if ccount == rcount:
if offset < rdiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, offset,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, rdiff,
hflines + [t1])
# if it has the same as wing 0 then decide by offset
elif rcount == lcount:
if rdiff < ldiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, rdiff,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, ldiff,
hflines + [t1])
# otherwise just go with wing 1
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
rdiff, hflines + [t1])
# if wing 0 has the most possibles
elif m == lcount:
if lcount == rcount:
if ldiff < rdiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, ldiff,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, rdiff,
hflines + [t1])
elif ccount == lcount:
if offset < ldiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, offset,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, ldiff,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
ldiff, hflines + [t1])
else:
raise Exception("This should never happen")
cent["lines"].update(tempid)
if len(tempid) == 0:
continue
cent["blend"] += tblend
# the easy case of no hyperfine components
else:
poffset = utils.freqtovel(k, k - t1.getkey("frequency"))
mpk = max(abs(parameters[0][0]), abs(parameters[1][0]),
abs(parameters[2][1]))
pkrms = mpk
if not isstats:
pkrms = mpk / noise
st = min(parameters[0][3][0], parameters[1][3][0], parameters[2][3][0])
en = max(parameters[0][3][1], parameters[1][3][1], parameters[2][3][1])
tfwhm = utils.freqtovel(k, abs((wings[1] + parameters[2][2]) -
(wings[0] - parameters[1][2])))
line = copy.deepcopy(t1)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity": float(mpk),
"peakoffset" : float(poffset),
"fwhm" : float(tfwhm),
"chans" : [self.chan[self.chan.index(st)],
self.chan[self.chan.index(en)]],
"freqs" : [self.freq[self.chan.index(st)],
self.freq[self.chan.index(en)]],
"peakrms" : float(pkrms),
"blend" : 0})
identifications[k] = line
self.tier1list.append(line)
self.tier1chans.append([st, en])
frq = [peaks.getfreq(st), peaks.getfreq(en)]
self.tier1freq.append([min(frq), max(frq)])
todel.add(k)
# wing 0
closest = -1.0
distance = 100000.
for frq, val in peaks.fcenters.iteritems():
wng = val[1]
if t1.getkey("frequency") - fwidth <= wng[0] <= t1.getkey("frequency") + fwidth:
if abs(t1.getkey("frequency") - wng[0]) < distance:
closest = frq
distance = abs(t1.getkey("frequency") - wng[0])
if closest > 0.0:
k = closest
wings = peaks.fcenters[closest][1]
found = True
# if the line has hyperfine components then there is a lot of work to do
if trans in hfs:
# how much jitter do we allow ##### should be a parameter of the AT
rlen = 0
llen = 0
wiggle = 0.01 * fwidth
poffset = wings[0] - t1.getkey("frequency")
ldiff = wings[0] - t1.getkey("frequency")
rdiff = wings[1] - t1.getkey("frequency")
hflines = sorted(hfs[trans], key=lambda x: x.getkey("frequency"))
hflines.reverse()
mpk = max(abs(parameters[0][0]), abs(parameters[1][0]),
abs(parameters[2][1]))
pkrms = mpk
if not isstats:
pkrms = mpk / noise
tfwhm = utils.freqtovel(k, abs((wings[1] + parameters[2][2]) -
(wings[0] - parameters[1][2])))
# figure out all the possible main offsets
rdiff = wings[1] - t1.getkey("frequency")
st = parameters[1][3][0]
en = parameters[1][3][1]
llen += 1 + self.counthfclines(chfc, shfc, peaks, wiggle, ldiff, hflines)
# see what we get if wing 1 is the main line
tempid = {}
if t1.getkey("frequency") - fwidth < wings[1] < t1.getkey("frequency") + fwidth:
rlen += 1 + self.counthfclines(chfc, shfc, peaks, wiggle, rdiff,
hflines)
# see what we get if the center is the main line
# if there is no central peak
m = max(lcount, rcount) # highest number of matches
offset = abs(offset)
ldiff = abs(ldiff)
# minimum offset value
mo = min(abs(ldiff), abs(rdiff))
# if all have only 1 possible, then go with the center
if rlen == llen == 1:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
rdiff, hflines + [t1])
# if all have the same number of possibles, then go with the one that is closest to
# the expected rest frequency
elif rlen == llen:
if mo == offset:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
rdiff, hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
ldiff, hflines + [t1])
elif m == rlen:
# if it has the same as the center then decide by offset
if rlen == llen:
if rdiff < ldiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, rdiff,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, ldiff,
hflines + [t1])
# otherwise just go with wing 1
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
rdiff, hflines + [t1])
# if wing 0 has the most possibles
elif m == llen:
if llen == rlen:
if ldiff < rdiff:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, ldiff,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks,
wiggle, rdiff,
hflines + [t1])
else:
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle,
ldiff, hflines + [t1])
else:
raise Exception("This should never happen")
left["lines"].update(tempid)
if len(tempid) == 0:
continue
left["blend"] += tblend
# the easy case of no hyperfine components
else:
poffset = utils.freqtovel(wings[0], wings[0] - t1.getkey("frequency"))
mpk = max(abs(parameters[0][0]), abs(parameters[1][0]),
abs(parameters[2][1]))
pkrms = mpk
if not isstats:
pkrms = mpk / noise
rdiff = wings[1] - t1.getkey("frequency")
tfwhm = utils.freqtovel(k, abs((wings[1] + parameters[2][2]) -
(wings[0] - parameters[1][2])))
line = copy.deepcopy(t1)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(mpk),
"peakoffset" : float(poffset),
"fwhm" : float(tfwhm),
"chans" : [self.chan[self.chan.index(parameters[1][3][0])],
self.chan[self.chan.index(parameters[1][3][1])]],
"freqs" : [self.freq[self.chan.index(parameters[1][3][0])],
self.freq[self.chan.index(parameters[1][3][1])]],
"peakrms" : float(pkrms),
"blend" : 0
})
identifications[k] = line
self.tier1list.append(line)
self.tier1chans.append([parameters[1][3][0], parameters[1][3][1]])
frq = [peaks.getfreq(parameters[1][3][0]),
peaks.getfreq(parameters[1][3][1])]
self.tier1freq.append([min(frq), max(frq)])
todel.add(k)
closest = -1.0
distance = 100000.
for frq, val in peaks.fcenters.iteritems():
wng = val[1]
if t1.getkey("frequency") - fwidth <= wng[1] <= t1.getkey("frequency") + fwidth:
if abs(t1.getkey("frequency") - wng[1]) < distance:
closest = frq
distance = abs(t1.getkey("frequency") - wng[1])
if closest > 0.0:
wings = peaks.fcenters[closest][1]
found = True
# if the line has hyperfine components then there is a lot of work to do
if trans in hfs:
poffset = wings[1] - t1.getkey("frequency")
wings = v[1]
# how much jitter do we allow ##### should be a parameter of the AT
wiggle = 0.1 * fwidth
offset = wings[1] - t1.getkey("frequency")
hflines = sorted(hfs[trans], key=lambda x: x.getkey("frequency"))
hflines.reverse()
mpk = max(abs(parameters[0][0]), abs(parameters[1][0]),
abs(parameters[2][1]))
pkrms = mpk
if not isstats:
pkrms = mpk / noise
tfwhm = utils.freqtovel(k, abs((wings[1] + parameters[2][2]) -
(wings[0] - parameters[1][2])))
rdiff = wings[1] - t1.getkey("frequency")
tempid, tblend = self.taghfclines(chfc, shfc, peaks, wiggle, rdiff,
hflines + [t1])
right["lines"].update(tempid)
if len(tempid) == 0:
continue
right["blend"] += tblend
else:
poffset = utils.freqtovel(wings[1], wings[1] - t1.getkey("frequency"))
mpk = max(abs(parameters[0][0]), abs(parameters[1][0]),
abs(parameters[2][1]))
pkrms = mpk
if not isstats:
pkrms = mpk / noise
poffset = utils.freqtovel(k, k - t1.getkey("frequency"))
tfwhm = utils.freqtovel(k, abs((wings[1] + parameters[2][2]) -
(wings[0] - parameters[1][2])))
line = copy.deepcopy(t1)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(mpk),
"peakoffset" : float(poffset),
"fwhm" : float(tfwhm),
"chans" : [self.chan[self.chan.index(parameters[2][3][0])],
self.chan[self.chan.index(parameters[2][3][1])]],
"freqs" : [self.freq[self.chan.index(parameters[2][3][0])],
self.freq[self.chan.index(parameters[2][3][1])]],
"peakrms" : float(pkrms),
"blend" : 0
})
identifications[k] = line
self.tier1list.append(line)
self.tier1chans.append([parameters[2][3][0], parameters[2][3][1]])
frq = [peaks.getfreq(parameters[2][3][0]), peaks.getfreq(parameters[2][3][1])]
self.tier1freq.append([min(frq), max(frq)])
todel.add(k)
if trans in hfs:
if len(cent["lines"]) >= len(right["lines"]) and len(cent["lines"]) >= len(left["lines"]):
if len(cent["lines"]) != 0:
identifications.update(cent["lines"])
for val in cent["lines"].values():
self.tier1list.append(val)
self.tier1chans.append(cent["lines"].values()[0].getkey("chans"))
frq = [peaks.getfreq(cent["lines"].values()[0].getstart()),
peaks.getfreq(cent["lines"].values()[0].getend())]
self.tier1freq.append([min(frq), max(frq)])
blends += cent["blend"]
elif len(left["lines"]) >= len(right["lines"]):
identifications.update(left["lines"])
for val in left["lines"].values():
self.tier1list.append(val)
self.tier1chans.append(left["lines"].values()[0].getkey("chans"))
frq = [peaks.getfreq(left["lines"].values()[0].getstart()),
peaks.getfreq(left["lines"].values()[0].getend())]
self.tier1freq.append([min(frq), max(frq)])
blends += left["blend"]
else:
identifications.update(right["lines"])
for val in right["lines"].values():
self.tier1list.append(val)
self.tier1chans.append(right["lines"].values()[0].getkey("chans"))
frq = [peaks.getfreq(right["lines"].values()[0].getstart()),
peaks.getfreq(right["lines"].values()[0].getend())]
self.tier1freq.append([min(frq), max(frq)])
blends += right["blend"]
chanrange = {}
freqs = identifications.keys()
chans = []
for f in freqs:
chans.append(peaks.getchan(f))
temppeak = Peaks(spec=peaks.spec, fsingles=freqs, singles=chans, segments=peaks.segments)
for ident in freqs:
temp = self.getchannels(temppeak, noise, sid=peaks.getchan(ident), asfreq=True)
if temp is not None:
chanrange[ident] = temp
for f in freqs:
if chanrange[f] is None:
continue
ch = [peaks.getchan(chanrange[f][0]), peaks.getchan(chanrange[f][1])]
identifications[f].setstart(self.chan[self.chan.index(min(identifications[f].getstart(), min(ch)))])
identifications[f].setend(self.chan[self.chan.index(max(identifications[f].getend(), max(ch)))])
identifications[f].setkey("freqs", [self.freq[self.chan.index(identifications[f].getstart())],
self.freq[self.chan.index(identifications[f].getend())]])
delcent = []
for f in peaks.fcenters.keys():
for ch, vals in chanrange.iteritems():
if vals[0] <= f <= vals[1]:
delcent.append(f)
break
delsingle = []
for i in range(len(peaks.fsingles)):
if peaks.fsingles[i] in freqs:
continue
if peaks.fsingles[i] == 0:
delsingle.append(i)
for ch, vals in chanrange.iteritems():
if vals[0] <= peaks.fsingles[i] <= vals[1]:
delsingle.append(i)
delsingle.reverse()
for i in delcent:
try:
del peaks.fcenters[i]
except KeyError:
pass
for i in delsingle:
del peaks.fsingles[i]
# if no hits then check the wings
# now do the single peaks
while len(peaks.fsingles) > 0 and max(peaks.fsingles) > 0.0:
closest = -1
distance = 1000000.
for i in range(len(peaks.fsingles)):
seg = peaks.getfsegment(peaks.fsingles[i])
if peaks.fsingles[i] == 0.0:# or haveit:
continue
if t1.getkey("frequency") - fwidth < seg[0] < t1.getkey("frequency") + fwidth or\
t1.getkey("frequency") - fwidth < seg[1] < t1.getkey("frequency") + fwidth or\
seg[0] < t1.getkey("frequency") < seg[1]:
if abs(t1.getkey("frequency") - peaks.fsingles[i]) < distance:
distance = abs(t1.getkey("frequency") - peaks.fsingles[i])
closest = i
if closest >= 0:
# get the start and end channels
seg = peaks.getsegment(peaks.getchan(peaks.fsingles[closest]))
fseg = peaks.getfsegment(peaks.fsingles[closest])
if seg is None:
continue
# cannot just go with first peak, must find closest peak
[st, en] = seg
if t1.getkey("frequency") - fwidth < fseg[0] < t1.getkey("frequency") + fwidth or\
t1.getkey("frequency") - fwidth < fseg[1] < t1.getkey("frequency") + fwidth or\
fseg[0] < t1.getkey("frequency") < fseg[1]:
found = True
if trans in hfs:
# allow some uncertainty in the widths
wiggle = 0.1 * fwidth
hflines = sorted(hfs[trans], key=lambda x: x.getkey("frequency"))
hflines.reverse()
offset = peaks.fsingles[closest] - t1.getkey("frequency")
tempid, tblend = self.taghfclines(chfc, shfc, peaks, 0.0, offset,
hflines + [t1])
identifications.update(tempid)
for val in tempid.values():
self.tier1list.append(val)
if len(tempid) == 0:
continue
self.tier1chans.append(tempid.values()[0].getkey("chans"))
frq = [peaks.getfreq(tempid.values()[0].getstart()),
peaks.getfreq(tempid.values()[0].getend())]
self.tier1freq.append([min(frq), max(frq)])
peaks.fsingles[closest] = 0.0
blends += tblend
else:
poffset = utils.freqtovel(peaks.fsingles[closest],
peaks.fsingles[closest] - t1.getkey("frequency"))
peak = peaks.getspecs()[peaks.getchan(peaks.fsingles[closest])]
maxwidth = width = utils.veltofreq(10.0, peaks.fsingles[closest])
breakpoint = 0
if i > 0:
delta = abs(peaks.getfreqs()[peaks.singles[closest]]
- peaks.getfreqs()[peaks.singles[closest] - 1])
else:
delta = abs(peaks.getfreqs()[peaks.singles[closest]]
- peaks.getfreqs()[peaks.singles[closest] + 1])
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - peaks.fsingles[closest],
peaks.getspecs()[st:en + 1],
par=[peak, 0.0, width], width=fwidth)
if abs(popt[2]) > 0.0:
width = abs(popt[2]) * 1.17741
fcenter = peaks.fsingles[closest] + popt[1]
fwhm = utils.freqtovel(peaks.fsingles[closest], abs(popt[2])) * 1.17741
pkrms = peak
if not isstats:
pkrms /= noise
delta = utils.freqtovel(peaks.fsingles[closest], delta)
line = copy.deepcopy(t1)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(peak),
"peakoffset" : float(poffset),
"fwhm" : float(fwhm),
"chans" : [self.chan[self.chan.index(st)],
self.chan[self.chan.index(en)]],
"freqs" : [self.freq[self.chan.index(st)],
self.freq[self.chan.index(en)]],
"peakrms" : float(pkrms),
"blend" : 0
})
identifications[peaks.fsingles[closest]] = line
self.tier1list.append(line)
self.tier1chans.append([st, en])
frq = [peaks.getfreq(st), peaks.getfreq(en)]
self.tier1freq.append([min(frq), max(frq)])
peaks.fsingles[closest] = 0.0
chanrange = {}
freqs = identifications.keys()
chans = []
for f in freqs:
chans.append(peaks.getchan(f))
temppeak = Peaks(spec=peaks.spec, fsingles=freqs, singles=chans, segments=peaks.segments)
for ident in freqs:
temp = self.getchannels(temppeak, noise, sid=peaks.getchan(ident), asfreq=True)
if temp is not None:
chanrange[ident] = temp
for f in freqs:
if chanrange[f] is None:
continue
ch = [peaks.getchan(chanrange[f][0]), peaks.getchan(chanrange[f][1])]
identifications[f].setstart(self.chan[self.chan.index(min(identifications[f].getstart(), min(ch)))])
identifications[f].setend(self.chan[self.chan.index(max(identifications[f].getend(), max(ch)))])
identifications[f].setkey("freqs", [self.freq[self.chan.index(identifications[f].getstart())],
self.freq[self.chan.index(identifications[f].getend())]])
else:
break
delcent = []
freqs = identifications.keys()
chanrange = {}
for f in peaks.fcenters.keys():
if f in freqs:
continue
for ch, vals in chanrange.iteritems():
if vals[0] <= f <= vals[1]:
delcent.append(f)
break
delsingle = []
for i in range(len(peaks.fsingles)):
if peaks.fsingles[i] in freqs:
continue
if peaks.fsingles[i] == 0:
delsingle.append(i)
for ch, vals in chanrange.iteritems():
if vals[0] <= peaks.fsingles[i] <= vals[1]:
delsingle.append(i)
delsingle.reverse()
for i in delcent:
try:
del peaks.fcenters[i]
except KeyError:
pass
for i in delsingle:
del peaks.fsingles[i]
slen = len(peaks.fsingles)
# now process anything that is not Tier 1
# start with the complex sets
for freq, v in peaks.fcenters.iteritems():
# central frequency and channel spacing
parameters = {0: [0, 0, 0, [10000, 0]],
1: [0, 0, 0, []],
2: [0, 0, 0, []]}
centerpeak = v[0]
delta = abs(peaks.getfreqs()[peaks.getchan(freq)] - peaks.getfreqs()[peaks.getchan(freq) - 1])
# frequencies of offset lines
wings = v[1]
# rought width
twidth = abs(wings[0] - wings[1]) / 2.0
width = twidth
# if there is a central peak in the cluster
peak = 0.0
if centerpeak:
# calculate starting and ending channels to extract for the line fitting
# cut will will be center +- 3*FWHM, keeping in mind the window edges
st = max(0, peaks.getchan(freq) - 1.5 * int(twidth / (delta)))
en = min(len(peaks) - 1, peaks.getchan(freq) + 1.5 * int(twidth / (delta)))
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
peak = peaks.getspecs()[peaks.getchan(freq)]
hpk = peak / 2.0
# get a better number for the FWHM
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - freq,
peaks.getspecs()[st:en + 1],
par=[peak, 0.0, width], width=fwidth)
width = abs(popt[2])
chans = self.getchannels(peaks, noise, cid=peaks.getchan(freq))
if chans is None:
continue
parameters[0] = [peak, popt[1], abs(popt[2]), chans]
for i in [0, 1]:
peakw = peaks.getspecs()[peaks.getchan(wings[i])]
st = max(0, peaks.getchan(wings[i]) - 1.5 * int(twidth / (delta)))
en = min(len(peaks) - 1, peaks.getchan(wings[i]) + 1.5 * \
int(twidth / (delta)))
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
# get a better number for the FWHM
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - wings[i],
peaks.getspecs()[st:en + 1],
par=[peakw, 0.0, twidth],width=fwidth)
chans = self.getchannels(peaks, noise, cid=peaks.getchan(wings[i]))
if chans is None:
continue
parameters[i + 1] = [peakw, popt[1], abs(popt[2]), chans]
clow = min(parameters[0][3][0], parameters[1][3][0], parameters[2][3][0])
chigh = max(parameters[0][3][1], parameters[1][3][1], parameters[2][3][1])
possibilities = []
wpossibles = {}
# search around the central frequency
width *= 1.05
possibilities += self.generatepossibles([freq - width, freq + width])
# if there is a central peak then search around all possible offsets
# in case this is not a true cluster but just random coincidence
if centerpeak:
for off in peaks.offsets:
possibilities += self.generatepossibles([freq - width - off,
freq + width - off])
possibilities += self.generatepossibles([freq - width + off,
freq + width + off])
# take care of the wings
wpeak = []
wfwhm = []
wwidth = []
for i in [0, 1]:
wpossibles[i] = []
# calculate starting and ending channels to extract for the line fitting
# cut will will be center +- 3*FWHM, keeping in mind the window edges
st = max(0, peaks.getchan(wings[i]) - 3 * int(twidth / (delta)))
en = min(len(peaks) - 1, peaks.getchan(wings[i]) + 3 * int(twidth / (delta)))
if en - st < 11:
df = (11 - (en - st)) / 2
st -= df
en += df
if st < 0:
en += abs(st)
st = 0
if en > len(peaks) - 1:
df = en - len(peaks)
st = max(0, st - df)
en = len(peaks) - 1
wpeak.append(peaks.getspecs()[peaks.getchan(wings[i])])
# get a better value for the FWHM
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - freq,
peaks.getspecs()[st:en + 1], par=[peak, 0.0, width],width=fwidth)
wwidth.append(width)
wfwhm.append(utils.freqtovel(wings[i], abs(popt[2])))
# search around the central frequency of the line
wpossibles[i] += self.generatepossibles([wings[i] - wwidth[i],
wings[i] + wwidth[i]])
# search as if this line is offset in case this is a single line and not a cluster
if not ispvcorr:
for off in peaks.offsets:
wpossibles[i] += self.generatepossibles([wings[i] - wwidth[i] - off,
wings[i] + wwidth[i] - off])
wpossibles[i] += self.generatepossibles([wings[i] - wwidth[i] + off,
wings[i] + wwidth[i] + off])
# if we have no results from all searches then we have U lines
if len(possibilities) == len(wpossibles[0]) == len(wpossibles[1]) == 0:
name = "Unknown"
qn = ""
linestr = 0.0
eu = 0.0
el = 0.0
vel = 0.0
if centerpeak:
species = "U_%.4f" % (freq)
frq = float(freq)
winner = LineData(formula=species, name=name, frequency=frq, uid=species,
energies=[el, eu], linestrength=linestr, transition=qn,
plain=species)
pkrms = parameters[0][0]
if not isstats:
pkrms /= noise
chans = self.checktier1chans(peak, [parameters[0][3][0], parameters[0][3][1]])
if chans is None:
identifications[freq] = self.gettier1line([parameters[0][3][0],
parameters[0][3][1]])
identifications[freq].setkey("chans", [self.chan[self.chan.index(parameters[0][3][0])],
self.chan[self.chan.index(parameters[0][3][1])]])
identifications[freq].setkey("freqs", [self.freq[self.chan.index(parameters[0][3][0])],
self.freq[self.chan.index(parameters[0][3][1])]])
else:
winner.setkey({"velocity" : float(vel),
"peakintensity" : float(parameters[0][0]),
"fwhm" : float(utils.freqtovel(freq, parameters[0][2])),
"chans" : [self.chan[self.chan.index(chans[0])],
self.chan[self.chan.index(chans[1])]],
"freqs" : [self.freq[self.chan.index(chans[0])],
self.freq[self.chan.index(chans[1])]],
"peakrms" : float(pkrms),
"blend" : 0
})
identifications[freq] = winner
for i in [0, 1]:
species = "U_%.4f" % (wings[i])
frq = float(wings[i])
wpeak = peaks.getspecs()[peaks.getchan(wings[i])]
winner = LineData(formula=species, name=name, frequency=frq, uid=species,
energies=[el, eu], linestrength=linestr, transition=qn,
plain=species)
pkrms = parameters[i + 1][0]
if not isstats:
pkrms /= noise
chans = self.checktier1chans(peaks, [parameters[i + 1][3][0], parameters[i + 1][3][1]])
if chans is None:
identifications[freq] = self.gettier1line([parameters[i + 1][3][0],
parameters[i + 1][3][1]])
identifications[freq].setkey("chans", [self.chan[self.chan.index(parameters[i + 1][3][0])],
self.chan[self.chan.index(parameters[i + 1][3][1])]])
identifications[freq].setkey("freqs", [self.freq[self.chan.index(parameters[i + 1][3][0])],
self.freq[self.chan.index(parameters[i + 1][3][1])]])
else:
winner.setkey({"velocity" : float(vel),
"peakintensity" : float(parameters[i + 1][0]),
"fwhm" : float(utils.freqtovel(wings[i], parameters[i + 1][2])),
"chans" : [self.chan[self.chan.index(chans[0])],
self.chan[self.chan.index(chans[1])]],
"freqs" : [self.freq[self.chan.index(chans[0])],
self.freq[self.chan.index(chans[1])]],
"peakrms" : float(pkrms),
"blend" : 0})
identifications[wings[i]] = winner
# otherwise narrow it down for each one
else:
wblends = []
w1blends = []
w2blends = []
if len(possibilities) > 0:
# eliminate doubles before proceeding
drop = set()
for i, poss in enumerate(possibilities):
for j in range(i + 1, len(possibilities)):
if poss.frequency == possibilities[j].frequency and \
poss.transition == possibilities[j].transition and \
poss.formula == possibilities[j].formula:
drop.add(j)
drop = list(drop)
drop.sort()
drop.reverse()
for d in drop:
del possibilities[d]
temp = self.narrowpossibles(possibilities)
winner = temp.pop(0)
for b in temp:
wblends.append(b)
else:
winner = LineData()
if len(wpossibles[0]) > 0:
drop = set()
for i, poss in enumerate(wpossibles[0]):
for j in range(i + 1, len(wpossibles[0])):
if poss.frequency == wpossibles[0][j].frequency and \
poss.transition == wpossibles[0][j].transition and \
poss.formula == wpossibles[0][j].formula:
drop.add(j)
drop = list(drop)
drop.sort()
drop.reverse()
for d in drop:
del wpossibles[0][d]
temp = self.narrowpossibles(wpossibles[0])
w1winner = temp.pop(0)
for b in temp:
w1blends.append(b)
else:
w1winner = LineData()
if len(wpossibles[1]) > 0:
drop = set()
for i, poss in enumerate(wpossibles[1]):
for j in range(i + 1, len(wpossibles[1])):
if poss.frequency == wpossibles[1][j].frequency and \
poss.transition == wpossibles[1][j].transition and \
poss.formula == wpossibles[1][j].formula:
drop.add(j)
drop = list(drop)
drop.sort()
drop.reverse()
for d in drop:
del wpossibles[1][d]
temp = self.narrowpossibles(wpossibles[1])
w2winner = temp.pop(0)
for b in temp:
w2blends.append(b)
else:
w2winner = LineData()
if winner.getkey("formula") == "":
winner = w2winner # work around
if winner.getkey("formula") == w1winner.getkey("formula") == "":
winner = w2winner
if winner.getkey("formula") == w2winner.getkey("formula") == "":
winner = w1winner
# compare species and QN, if they all match then delcare them all as one line
if (winner.getkey("formula") == w1winner.getkey("formula") == w2winner.getkey("formula") and
winner.getkey("transition") == w1winner.getkey("transition") == w2winner.getkey("transition") and \
winner.getkey("formula") != "") or \
(winner.getkey("formula") == w1winner.getkey("formula") and
winner.getkey("transition") == w1winner.getkey("transition")) or\
(winner.getkey("formula") == w2winner.getkey("formula") and
winner.getkey("transition") == w2winner.getkey("transition")) or\
(w1winner.getkey("formula") == w2winner.getkey("formula") and
w1winner.getkey("transition") == w2winner.getkey("transition") and
w1winner.getkey("formula") != ""):
poffset = utils.freqtovel(freq, freq - float(winner.getkey("frequency")))
mpk = max(abs(parameters[0][0]), abs(parameters[1][0]),
abs(parameters[2][1]))
pkrms = mpk
if not isstats:
pkrms = mpk / noise
tfwhm = utils.freqtovel(freq, abs((wings[1] + wwidth[1]) -
(wings[0] - wwidth[0])))
chans = self.checktier1chans(peaks, [clow, chigh])
if chans is None:
identifications[freq] = self.gettier1line([clow, chigh])
identifications[freq].setkey("chans", [self.chan[self.chan.index(clow)],
self.chan[self.chan.index(chigh)]])
identifications[freq].setkey("freqs", [self.freq[self.chan.index(clow)],
self.freq[self.chan.index(chigh)]])
else:
line = copy.deepcopy(winner)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(mpk),
"peakoffset" : float(poffset),
"fwhm" : float(tfwhm),
"chans" : [self.chan[self.chan.index(chans[0])],
self.chan[self.chan.index(chans[1])]],
"freqs" : [self.freq[self.chan.index(chans[0])],
self.freq[self.chan.index(chans[1])]],
"peakrms" : float(pkrms)
})
identifications[freq] = line
blends += wblends
wings.sort()
foundcomplex.append((wings, copy.deepcopy(winner)))
# otherwise proceed as they are different lines
else:
if centerpeak:
poffset = utils.freqtovel(freq, freq - winner.getkey("frequency"))
pkrms = parameters[0][0]
if not isstats:
pkrms /= noise
fwhm = utils.freqtovel(freq, parameters[0][2])
chans = self.checktier1chans(peaks, [parameters[0][3][0],
parameters[0][3][1]])
if chans is None:
identifications[freq] = self.gettier1line([parameters[0][3][0],
parameters[0][3][1]])
identifications[freq].setkey("chans", [self.chan[self.chan.index(parameters[0][3][0])],
self.chan[self.chan.index(parameters[0][3][1])]])
identifications[freq].setkey("freqs", [self.freq[self.chan.index(parameters[0][3][0])],
self.freq[self.chan.index(parameters[0][3][1])]])
else:
line = copy.deepcopy(winner)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(peak),
"peakoffset" : float(poffset),
"fwhm" : float(tfwhm),
"chans" : [self.chan[self.chan.index(chans[0])],
self.chan[self.chan.index(chans[1])]],
"freqs" : [self.freq[self.chan.index(chans[0])],
self.freq[self.chan.index(chans[1])]],
"peakrms" : float(pkrms)
})
identifications[freq] = line
blends += wblends
poffset = utils.freqtovel(wings[0], wings[0] - w1winner.getkey("frequency"))
pkrms = parameters[1][0]
if not isstats:
pkrms /= noise
fwhm = utils.freqtovel(freq, parameters[1][2])
chans = self.checktier1chans(peaks, [parameters[1][3][0], parameters[1][3][1]])
if chans is None:
identifications[freq] = self.gettier1line([parameters[1][3][0],
parameters[1][3][1]])
identifications[freq].setkey("chans", [self.chan[self.chan.index(parameters[1][3][0])],
self.chan[self.chan.index(parameters[1][3][1])]])
identifications[freq].setkey("freqs", [self.freq[self.chan.index(parameters[1][3][0])],
self.freq[self.chan.index(parameters[1][3][1])]])
else:
line = copy.deepcopy(w1winner)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(wpeak[0]),
"peakoffset" : float(poffset),
"fwhm" : float(fwhm),
"chans" : [self.chan[self.chan.index(chans[0])],
self.chan[self.chan.index(chans[1])]],
"freqs" : [self.freq[self.chan.index(chans[0])],
self.freq[self.chan.index(chans[1])]],
"peakrms" : float(pkrms)
})
identifications[wings[0]] = line
blends += w1blends
poffset = utils.freqtovel(wings[1], wings[1] - w2winner.getkey("frequency"))
pkrms = parameters[2][0]
if not isstats:
pkrms /= noise
fwhm = utils.freqtovel(wings[1], parameters[2][2])
chans = self.checktier1chans(peaks, [parameters[2][3][0], parameters[2][3][1]])
if chans is None:
identifications[freq] = self.gettier1line([parameters[2][3][0],
parameters[2][3][1]])
identifications[freq].setkey("chans", [self.chan[self.chan.index(parameters[2][3][0])],
self.chan[self.chan.index(parameters[2][3][1])]])
identifications[freq].setkey("freqs", [self.freq[self.chan.index(parameters[2][3][0])],
self.freq[self.chan.index(parameters[2][3][1])]])
else:
line = copy.deepcopy(w2winner)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(wpeak[1]),
"peakoffset" : float(poffset),
"fwhm" : float(fwhm),
"chans" : [self.chan[self.chan.index(chans[0])],
self.chan[self.chan.index(chans[1])]],
"freqs" : [self.freq[self.chan.index(chans[0])],
self.freq[self.chan.index(chans[1])]],
"peakrms" : float(pkrms)
})
identifications[wings[1]] = line
blends += w2blends
# now do the single points
for i in range(slen):
if peaks.fsingles[i] == 0:
continue
found = False
for fc in foundcomplex:
wing = fc[0]
win = fc[1]
if wing[0] <= peaks.fsingles[i] <= wing[1]:
if slen == 1:
maxwidth = width = utils.veltofreq(10.0, peaks.fsingles[i])
breakpoint = 0
if i > 0:
delta = abs(peaks.getfreqs()[peaks.singles[i]] -
peaks.getfreqs()[peaks.singles[i] - 1])
else:
delta = abs(peaks.getfreqs()[peaks.singles[i]] -
peaks.getfreqs()[peaks.singles[i] + 1])
elif i > 0 and i < slen - 1:
maxwidth = width = min(abs(peaks.fsingles[i] - peaks.fsingles[i - 1]),
abs(peaks.fsingles[i] - peaks.fsingles[i + 1]))
breakpoint = int(min(abs(peaks.singles[i] - peaks.singles[i - 1]),
abs(peaks.singles[i] - peaks.singles[i + 1])))
delta = abs(peaks.getfreqs()[peaks.singles[i]] -
peaks.getfreqs()[peaks.singles[i] - 1])
elif i > 0:
maxwidth = width = abs(peaks.fsingles[i] - peaks.fsingles[i - 1])
breakpoint = max(int(abs(peaks.singles[i] - peaks.singles[i - 1])), 5)
delta = abs(peaks.getfreqs()[peaks.singles[i]] -
peaks.getfreqs()[peaks.singles[i] - 1])
else:
maxwidth = width = abs(peaks.fsingles[i] - peaks.fsingles[i + 1])
breakpoint = max(int(abs(peaks.singles[i] - peaks.singles[i + 1])), 5)
delta = abs(peaks.getfreqs()[peaks.singles[i]] -
peaks.getfreqs()[peaks.singles[i] + 1])
if slen == 1:
st = int(max(0, peaks.singles[i] - 10))
en = int(min(len(peaks), peaks.singles[i] + 10))
else:
st = int(max(0, peaks.singles[i] - max(3 * int(width / (delta)), 3)))
en = int(min(len(peaks), peaks.singles[i] + max(3 * int(width / (delta)), 3)))
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - peaks.fsingles[i],
peaks.getspecs()[st:en + 1], par=[peak, 0.0, width],width=fwidth)
fcenter = peaks.fsingles[i] + popt[1]
endpoints = self.getchannels(peaks, noise, sid=peaks.singles[i])
if endpoints is None:
continue
poffset = utils.freqtovel(fcenter, fcenter - win.getkey("frequency"))
if abs(popt[2]) > 0.0:
width = abs(popt[2])
peak = peaks.getspecs()[peaks.singles[i]]
hpk = peak / 2.0
pkrms = hpk * 2.0
if not isstats:
pkrms /= noise
fwhm = utils.freqtovel(peaks.fsingles[i], abs(popt[2]))
chans = self.checktier1chans(peaks, [endpoints[0], endpoints[1]])
if chans is None:
identifications[peaks.fsingles[i]] = self.gettier1line([endpoints[0], endpoints[1]])
identifications[peaks.fsingles[i]].setkey("chans", [self.chan[self.chan.index(endpoints[0])],
self.chan[self.chan.index(endpoints[1])]])
identifications[peaks.fsingles[i]].setkey("freqs", [self.freq[self.chan.index(endpoints[0])],
self.freq[self.chan.index(endpoints[1])]])
else:
line = copy.deepcopy(win)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(peak),
"peakoffset" : float(poffset),
"fwhm" : float(fwhm),
"chans" : [self.chan[self.chan.index(chans[0])],
self.chan[self.chan.index(chans[1])]],
"freqs" : [self.freq[self.chan.index(chans[0])],
self.freq[self.chan.index(chans[1])]],
"peakrms" : float(hpk * 2.0 / pkrms)
})
identifications[peaks.fsingles[i]] = line
found = True
if found:
continue
# determine rough limits on the width of the lines both in frequency space and channel space
# calculate the width of each channel
# also be mindful of the edges of the window
if slen == 1:
maxwidth = width = utils.veltofreq(10.0, peaks.fsingles[i])
breakpoint = 0
if i > 0:
delta = abs(peaks.getfreqs()[peaks.singles[i]] - peaks.getfreqs()[peaks.singles[i] - 1])
else:
delta = abs(peaks.getfreqs()[peaks.singles[i]] - peaks.getfreqs()[peaks.singles[i] + 1])
st = int(max(0, peaks.singles[i] - 10))
en = int(min(len(peaks), peaks.singles[i] + 10))
elif i > 0 and i < slen - 1:
maxwidth = width = min(abs(peaks.fsingles[i] - peaks.fsingles[i - 1]),
abs(peaks.fsingles[i] - peaks.fsingles[i + 1]))
breakpoint = int(min(abs(peaks.singles[i] - peaks.singles[i - 1]),
abs(peaks.singles[i] - peaks.singles[i + 1])))
delta = abs(peaks.getfreqs()[peaks.singles[i]] - peaks.getfreqs()[peaks.singles[i] - 1])
elif i > 0:
maxwidth = width = abs(peaks.fsingles[i] - peaks.fsingles[i - 1])
breakpoint = max(int(abs(peaks.singles[i] - peaks.singles[i - 1])), 5)
delta = abs(peaks.getfreqs()[peaks.singles[i]] - peaks.getfreqs()[peaks.singles[i] - 1])
else:
maxwidth = width = abs(peaks.fsingles[i] - peaks.fsingles[i + 1])
breakpoint = max(int(abs(peaks.singles[i] - peaks.singles[i + 1])), 5)
delta = abs(peaks.getfreqs()[peaks.singles[i]] - peaks.getfreqs()[peaks.singles[i] + 1])
endpoints = self.getchannels(peaks, noise, sid=peaks.getchan(peaks.fsingles[i]))
if endpoints is None:
continue
# get the spectral peak
peak = peaks.getspecs()[peaks.singles[i]]
hpk = peak / 2.0
# calculate a rough FWHM
for j in range(1, breakpoint):
if peaks.getspecs()[max(peaks.singles[i] - j, 0)] < hpk or \
peaks.getspecs()[min(peaks.singles[i] + j, slen - 1)] < hpk:
width = min(2.0 * float(j) * delta, maxwidth)
break
# calculate starting and ending channels to extract for the line fitting
# cut will will be center +- 3*FWHM, keeping in mind the window edges
if slen > 1:
st = int(max(0, peaks.singles[i] - max(3 * int(width / (delta)), 3)))
en = int(min(len(peaks), peaks.singles[i] + max(3 * int(width / (delta)), 3)))
if st==en:
fwidth = abs(peaks.getfreqs()[st]-peaks.getfreqs()[st+1])
# fit the data with a gaussian
popt, pcov = utils.fitgauss1D(peaks.getfreqs()[st:en + 1] - peaks.fsingles[i],
peaks.getspecs()[st:en + 1], par=[peak, 0.0, width],width=fwidth)
width = abs(peaks.getfreq(endpoints[0]) - peaks.getfreq(endpoints[1])) / 2.
fcenter = peaks.fsingles[i] + popt[1]
fwhm = utils.freqtovel(peaks.fsingles[i], abs(popt[2]))
limits = peaks.limitwidth(peaks.fsingles[i], width)
# look for an identification around the line
possibilities = []
possibilities += self.generatepossibles(limits)
# look for other identifications in case this line is red/blue shifted due to rotation/collapse
if not ispvcorr:
for k in peaks.offsets:
possibilities += self.generatepossibles([peaks.fsingles[i] - width - k,
peaks.fsingles[i] + width - k])
possibilities += self.generatepossibles([peaks.fsingles[i] - width + k,
peaks.fsingles[i] + width + k])
if len(possibilities) == 0:
# if none were found the set it as a U line
species = "U_%.4f" % (peaks.fsingles[i])
name = "Unknown"
freq = peaks.fsingles[i]
qn = ""
linestr = 0.0
eu = 0.0
el = 0.0
poffset = 0.0
winner = LineData(formula=species, name=name, frequency=float(freq), uid=species,
energies=[el, eu], linestrength=linestr,
mass=utils.getmass(species), transition=qn, plain=species)
else:
# narrow down the possibilities
# eliminate doubles before proceeding
drop = set()
for k, poss in enumerate(possibilities):
for j in range(k + 1, len(possibilities)):
if poss.frequency == possibilities[j].frequency and \
poss.transition == possibilities[j].transition and \
poss.formula == possibilities[j].formula:
drop.add(j)
drop = list(drop)
drop.sort()
drop.reverse()
for d in drop:
del possibilities[d]
temp = self.narrowpossibles(possibilities)
winner = temp.pop(0)
for b in temp:
blends.append(b)
# calculate velocity offset
poffset = utils.freqtovel(fcenter, fcenter - winner.getkey("frequency"))
pkrms = hpk * 2.0
if not isstats:
pkrms /= noise
delta = utils.freqtovel(peaks.fsingles[i], delta)
chans = self.checktier1chans(peaks, [endpoints[0], endpoints[1]])
if chans is None:
identifications[peaks.fsingles[i]] = self.gettier1line([endpoints[0], endpoints[1]])
identifications[peaks.fsingles[i]].setkey("chans", [self.chan[self.chan.index(endpoints[0])],
self.chan[self.chan.index(endpoints[1])]])
identifications[peaks.fsingles[i]].setkey("freqs", [self.freq[self.chan.index(endpoints[0])],
self.freq[self.chan.index(endpoints[1])]])
else:
line = copy.deepcopy(winner)
line.setkey({"velocity" : float(poffset + self.vlsr),
"peakintensity" : float(peak),
"peakoffset" : float(poffset),
"fwhm" : float(fwhm),
"chans" : [self.chan[self.chan.index(chans[0])],
self.chan[self.chan.index(chans[1])]],
"freqs" : [self.freq[self.chan.index(chans[0])],
self.freq[self.chan.index(chans[1])]],
"peakrms" : float(hpk * 2.0 / pkrms)
})
identifications[peaks.fsingles[i]] = line
badblends = []
for i, blend in enumerate(blends):
found = False
for ident in identifications.values():
if ident.blend == blend.blend:
found = True
if not found:
badblends.append(i)
badblends.reverse()
for b in badblends:
del blends[b]
for b in blends:
for line in identifications.values():
if b.blend == line.blend:
b.setkey("chans", line.getkey("chans"))
b.setkey("freqs", line.getkey("freqs"))
peaks.linelist.update(identifications)
peaks.blends += blends
[docs] def getchannels(self, peaks, noise, sid=-1, cid=-1, asfreq=False):
""" Method to determine the channel ranges for thr given spectral line.
First uses the segment to get the maximum extent of the line, then
compares the channel range to all other peaks and makes adjustments
so that the channel range does not incorporate mote than one peak.
Parameters
----------
peaks : Peaks instance
The peaks instance which lists all peaks in the spectrum
noise : float
The noise level of the spectrum
sid : int
Center channel of the spectrum to find the channel ranges for.
Default: -1
cid : int
Center channel of the cluster to find the channel ranges for.
Default: -1
asfreq : bool
Whether to return the end poitns in frequency units (True) or
channel numbers (False).
Defult : False (channel numbers)
Returns
-------
List containing both the start and end channels for the given peak
Notes
-----
Both sid and cid are mutually exclusive.
"""
if sid == cid == -1:
raise Exception("An id index must be given, sid or cid")
if sid > -1 and cid > -1:
raise Exception("Only one of sid or cid can be given")
# if we are given a single line to trace
if sid > -1:
# get the initial trace
points = copy.deepcopy(peaks.getsegment(int(sid)))
# now see if it encompases other peaks, if it does then move the endpoint(s)
# so that they do not overlap
if points is None:
return None
for spk in peaks.singles:
if spk == sid:
continue
if points[0] < spk < sid:
points[0] = int((sid + spk) / 2)
elif points[1] > spk > sid:
points[1] = int((sid + spk) / 2)
# do the same for the clusters
for chan, v in peaks.centers.iteritems():
if v[0]:
if points[0] < chan < sid:
points[0] = int((sid + chan) / 2)
elif points[1] > chan > sid:
points[1] = int((sid + chan) / 2)
for ch in v[1]:
if points[0] < ch < sid:
points[0] = int((sid + ch) / 2)
elif points[1] > ch > sid:
points[1] = int((sid + ch) / 2)
# if frequency units are requested
if asfreq:
t1 = peaks.getfreq(points[0])
t2 = peaks.getfreq(points[1])
points[0] = min(t1, t2)
points[1] = max(t1, t2)
return points
# if we are given a cluster to trace
if cid > -1:
# get the initial trace
points = copy.deepcopy(peaks.getsegment(int(cid)))
# now see if it encompases other peaks, if it does then move the endpoint(s)
# so that they do not overlap
if points is None:
return None
for spk in peaks.singles:
if points[0] < spk < cid:
points[0] = int((cid + spk) / 2)
elif points[1] > spk > cid:
points[1] = int((cid + spk) / 2)
# do the same for the clusters
for chan, v in peaks.centers.iteritems():
if v[0]:
if chan == cid:
break
if points[0] < chan < cid:
points[0] = int((cid + chan) / 2)
elif points[1] > chan > cid:
points[1] = int((cid + chan) / 2)
for ch in v[1]:
if ch == cid:
continue
if points[0] < ch < cid:
points[0] = int((cid + ch) / 2)
elif points[1] > ch > cid:
points[1] = int((cid + ch) / 2)
# if frequency units are requested
if asfreq:
t1 = peaks.getfreq(points[0])
t2 = peaks.getfreq(points[1])
points[0] = min(t1, t2)
points[1] = max(t1, t2)
return points
[docs] def checkcount(self, counts):
""" Method to determine if there are too many peaks for the pattern finder to be of use. If
there are too many points then false patterns can be found. The threshold has been
experimentally determined to be a second order poynolmial based on the number of
of channels. See the design documentation for specifics and details.
Parameters
----------
counts : dict
Dictionary containing the peaks for each input spectrum.
Returns
-------
Bool, True if there are too many peaks for the pattern finder to be of use, False
otherwise.
"""
fit = [42.96712785, -777.04366254, 3892.90652112]
for peaks in counts["stats"]:
count = len(peaks)
if count < 10:
if len(self.freq) < count*48.07692308:
logging.info("Too many peaks in CubeStats for pattern finding to be useful, turning it off.")
return True
elif len(self.freq) < fit[0] * count**2 + fit[1] * count + fit[2]:
logging.info("Too many peaks in CubeStats for pattern finding to be useful, turning it off.")
return True
for peaks in counts["specs"]:
count = len(peaks)
if count < 10:
if len(self.freq) < count*48.07692308:
logging.info("Too many peaks in CubeSpectrum for pattern finding to be useful, turning it off.")
return True
elif len(self.freq) < fit[0] * count**2 + fit[1] * count + fit[2]:
logging.info("Too many peaks in CubeSpectrum for pattern finding to be useful, turning it off.")
return True
return False
[docs] def run(self):
""" The run method, locates lines, attempts to identify them, and
creates the BDP
Parameters
----------
None
Returns
-------
None
"""
self.dt = utils.Dtime("LineID")
if not self.boxcar:
logging.info("Boxcar smoothing turned off.")
self._summary = {}
self.spec_description = []
taskargs = self._taskargs()
statbdp = None # for the CubeStats BDP
pvbdp = None # for the PVCorr BDP
specbdp = None # for the CubeSpectrum BDP
self.specs = [] # to hold the input CubeSpectrum based spectra
self.freq = None
self.statspec = [] # to hold the input CubeStats based spectrum
self.pvspec = None
self.pvseg = []
self.statseg = [] # to hold the detected segments from statspec
self.specseg = [] # to hold the detected segments from specs
self.chan = [] # to hold the channel numbers for each channel for specs
self.statcutoff = [] # cutoff for statspec line finding
self.speccutoff = [] # cutoff for specs line finding
self.infile = ""
self.tol = self.getkey("minchan")
self.blendcount = 1
self.tier1chans = [] # to hold lists of Tier1 channels
self.tier1freq = []
self.tier1list = []
self.force = []
self.forcechans = []
self.forcefreqs = []
self.reject = self.getkey("reject")
self.pattern = self.getkey("pattern").upper()
for rej in self.reject:
if rej[1] is None:
logging.info(" Rejecting all transitions of %s." % (rej[0]))
else:
logging.info("Rejecting %s at %f GHz." % (rej[0], rej[1]))
if self.getkey("minchan") < 1:
raise Exception("minchan must be a positive integer.")
elif self.getkey("minchan") == 1 and self.getkey("iterate"):
logging.info("iterate=True is not allowed for minchan=1, setting iterate to False")
self.setkey("iterate", False)
havesomething = False
for i, ident in enumerate(self.getkey("force")):
if isinstance(ident, LineData):
ident.setkey("force", True)
ident.setkey("uid",isent.getkey("uid") + "F%02i" % i)
self.force.append(ident)
logging.info(" Forcing: %s @ %f GHz chans[%i, %i]" % (ident.getkey("formula"),
ident.getkey("frequency"),
ident.getstart(),
ident.getend()))
elif isinstance(ident, tuple) or isinstance(ident, list):
if len(ident) != 8:
raise Exception("Incorrect number of items in force entry. See documentation for correct entries, all are required.")
self.force.append(LineData(frequency=ident[0], uid=ident[1] + "F%02i" % i, formula=ident[2],
name=ident[3], transition=ident[4],
velocity=float(ident[5]),
chans=[int(ident[6]), int(ident[7])], force=True))
logging.info(" Forcing: %s @ %f GHz chans[%i, %i]" % (ident[2], ident[0],
int(ident[6]), int(ident[7])))
else:
raise Exception("Improper format for force list. The list must contain tuples, lists or LineData objects, not %s." % (type(ident)))
self.forcechans.append(self.force[-1].getkey("chans"))
havesomething = True
# get the input bdp
if self._bdp_in[0] is not None:
specbdp = self._bdp_in[0]
self.infile = specbdp.xmlFile
if self._bdp_in[1] is not None:
statbdp = self._bdp_in[1]
self.infile = statbdp.xmlFile
if self._bdp_in[2] is not None:
pvbdp = self._bdp_in[2]
self.infile = pvbdp.xmlFile
# still need to do this check since all are optional inputs
if specbdp == pvbdp == statbdp is None:
raise Exception("No input BDP's found.")
imbase = self.mkext(self.infile, 'll')
llbdp = LineList_BDP(imbase)
self.vlsr = self.getkey("vlsr")
self.identifylines = self.getkey("identifylines")
if self.vlsr < -999999.0 and self.identifylines:
try:
self.vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0]
logging.info("Set vlsr = %.2f for line identification." % self.vlsr)
except:
logging.info("No vlsr found in summary data and none given as an argument, switching identifylines to False.")
self.identifylines = False
# Ingest_AT could still have written the magic value if RESTFREQ is missing
if self.vlsr < -999999.0:
self.identifylines = False
if self.identifylines:
vlsr = self.vlsr
else:
vlsr = 0.0
logging.info("Identifylines = %s" % str(self.identifylines))
logging.info("Using vlsr = %g" % vlsr)
# grab any optional references overplotted on the "ll" plots
line_ref = utils.get_references(self.getkey("references"))
# Default to SVG output (full-size PNG also produced on-the-fly during
# thumbnail creation).
self._plot_type = admit.util.PlotControl.SVG
# instantiate a plotter for all plots made herein
myplot = APlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir())
############################################################################
# Smoothing and continuum (baseline) subtraction of input spectra #
############################################################################
# get and smooth all input spectra
basicsegment = {"method": self.getkey("segment"),
"minchan": self.getkey("minchan"),
"maxgap": self.getkey("maxgap"),
"numsigma": self.getkey("numsigma"),
"iterate": self.getkey("iterate"),
"nomean": True}
segargsforcont = {"name": "Line_ID.%i.asap" % self.id(True),
"pmin": self.getkey("numsigma"),
"minchan": self.getkey("minchan"),
"maxgap": self.getkey("maxgap")}
if specbdp is not None:
self.specs = specutil.getspectrum(specbdp, vlsr, self.getkey("smooth"),
self.getkey("recalcnoise"), basicsegment)
# remove the continuum, if requested
if self.getkey("csub")[1] is not None:
order = self.getkey("csub")[1]
logging.info("Attempting Continuum Subtraction for Input Spectra")
specutil.contsub(self.id(True),self.specs, self.getkey("segment"), segargsforcont,algorithm="PolyFit",**{"deg" : order})
else:
for spec in self.specs:
spec.set_contin(np.zeros(len(spec)))
for spec in self.specs:
self.freq,self.chan = specutil.mergefreq(self.freq,self.chan,spec.freq(False), spec.chans(False))
self.dt.tag("getspectrum-cubespecs")
if statbdp is not None:
self.statspec = specutil.getspectrum(statbdp, vlsr, self.getkey("smooth"),
self.getkey("recalcnoise"), basicsegment)
# remove the continuum
if self.getkey("csub")[0] is not None:
order = self.getkey("csub")[0]
logging.info("Attempting Continuum Subtraction for Input CubeStats Spectra")
specutil.contsub(self.id(True),self.statspec, self.getkey("segment"), segargsforcont,algorithm="PolyFit",**{"deg" : order})
else:
for i, spec in enumerate(self.statspec):
spec.set_contin(np.zeros(len(spec)))
if len(self.statspec) > 0: self.statspec[1].invert()
for spec in self.statspec:
self.freq,self.chan = specutil.mergefreq(self.freq,self.chan,spec.freq(False), spec.chans(False))
self.dt.tag("getspectrum-cubestats")
if pvbdp is not None:
self.pvspec = specutil.getspectrum(pvbdp, vlsr, self.getkey("smooth"))
self.pvsigma = pvbdp.sigma
if len(self.pvspec.freq(False)) == 0:
pvbdp = None
else:
self.freq,self.chan = specutil.mergefreq(self.freq,self.chan,self.pvspec.freq(False), self.pvspec.chans(False))
self.pvspec.set_contin(np.zeros(len(self.pvspec)))
# Add spectra to the output BDPs.
if specbdp is not None:
for indx, spec in enumerate(self.specs):
llbdp.addSpectrum(spec, "CubeSpectrum_%i" % (indx))
if statbdp is not None:
for indx, spec in enumerate(self.statspec):
llbdp.addSpectrum(spec, "CubeStats_%i" % (indx))
if pvbdp is not None:
llbdp.addSpectrum(self.pvspec, "PVCorr")
if isinstance(self.freq, np.ndarray):
self.freq = self.freq.tolist()
if isinstance(self.chan, np.ndarray):
self.chan = self.chan.tolist()
self.integritycheck()
for force in self.force:
rng = [self.freq[force.getstart()], self.freq[force.getend()]]
force.setkey("freqs", [min(rng), max(rng)])
self.forcefreqs.append([min(rng), max(rng)])
# seach for segments of spectral line emission
method=self.getkey("segment")
minchan=self.getkey("minchan")
maxgap=self.getkey("maxgap")
numsigma=self.getkey("numsigma")
iterate=self.getkey("iterate")
self.dt.tag("segment finder")
if specbdp is not None:
logging.info("Detecting segments in CubeSpectrum based data")
values = specutil.findsegments(self.specs, method, minchan, maxgap, numsigma, iterate)
for i, t in enumerate(values):
self.specseg.append(self.checkforcesegs(t[0]))
self.specs[i].set_noise(t[2])
self.speccutoff.append(t[1])
if statbdp is not None:
logging.info("Detecting segments in CubeStats based data")
values = specutil.findsegments(self.statspec, method, minchan, maxgap, numsigma, iterate)
for i, t in enumerate(values):
self.statseg.append(self.checkforcesegs(t[0]))
self.statspec[i].set_noise(t[2])
if pvbdp is not None:
logging.info("Detecting segments in PVCorr based data")
values = specutil.findsegments([self.pvspec], method, minchan, maxgap, numsigma, iterate,noise=self.pvsigma)
self.pvspec.set_noise(self.pvsigma) # @TODO: why not values[0][2]?
for t in values:
self.pvseg = self.checkforcesegs(t[0])
self.pvcutoff = t[1]
# label and captions used immediately below and later in the code.
label = ["Peak/Noise", "Minimum/Noise"]
caption = ["Potential lines overlaid on peak intensity plot from CubeStats_BDP.",
"Potential lines overlaid on minimum intensity plot from CubeStats_BDP."]
# if we have no vlsr or just want the segments
# create the output
if not self.identifylines:
segments = utils.mergesegments([self.statseg,self.specseg,self.pvseg],len(self.freq))
lines = specutil.linedatafromsegments(self.freq,self.chan,segments,self.specs,self.statspec)
duplicate_lines = []
for l in lines:
if l.getkey('uid') in duplicate_lines:
logging.log(logging.WARNING, " Skipping-2 duplicate UID: " + l.getkey("uid"))
continue
else:
duplicate_lines.append(l.getkey('uid'))
llbdp.addRow(l)
logging.regression("LINEID: %s %.5f %d %d" % ("NotIdentified", l.frequency, l.chans[0], l.chans[1]))
# @todo vlsr could now have been taken from Summary, so getkey() is an old value
if self.getkey("vlsr") > -999998.0:
t = "Rest"
else:
t = "Sky"
xlabel = "%s Frequency (GHz)" % (t)
for i, spec in enumerate(self.statspec):
freqs = []
for ch in self.statseg[i]:
freqs.append([min(spec.freq()[ch[0]], spec.freq()[ch[1]]),
max(spec.freq()[ch[0]], spec.freq()[ch[1]])])
mult = 1.
if i == 1:
mult = -1.
# print("MWP plot cutoff[%d] = %f, contin=%f" % (i, (spec.contin() + mult*(spec.noise() * self.getkey("numsigma")))[0], spec.contin()[0] ) )
myplot.segplotter(x=spec.freq(), y=spec.spec(csub=False),
title="Potential Line Locations", xlab=xlabel,
ylab=label[i], figname=imbase + "_statspec%i" % i, segments=freqs,
cutoff=(spec.contin() + mult * (spec.noise() * self.getkey("numsigma"))),
continuum=spec.contin(), thumbnail=True)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
image = Image(images={bt.SVG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=caption[i])
llbdp.image.addimage(image, "statspec%i" % i)
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel, imname,
thumbnailname, caption[i], self.infile])
for i, spec in enumerate(self.specs):
freqs = []
for ch in self.specseg[i]:
freqs.append([min(spec.freq()[ch[0]], spec.freq()[ch[1]]),
max(spec.freq()[ch[0]], spec.freq()[ch[1]])])
myplot.segplotter(x=spec.freq(), y=spec.spec(csub=False),
title="Potential Line Locations", xlab=xlabel,
ylab="Intensity", figname=imbase + "_spec%03d" % i, segments=freqs,
cutoff=spec.contin() + (spec.noise() * self.getkey("numsigma")),
continuum=spec.contin(), thumbnail=True)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno,
relative=True)
_caption = "Potential lines overlaid on input spectrum #%i." % (i)
image = Image(images={bt.SVG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=_caption)
llbdp.image.addimage(image, "spec%03d" % i)
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel, imname,
thumbnailname, _caption, self.infile])
if self.pvspec is not None:
freqs = []
for ch in self.pvseg:
freqs.append([min(self.pvspec.freq()[ch[0]], self.pvspec.freq()[ch[1]]),
max(self.pvspec.freq()[ch[0]], self.pvspec.freq()[ch[1]])])
myplot.segplotter(x=self.pvspec.freq(), y=self.pvspec.spec(csub=False),
title="Potential Line Locations", xlab=xlabel,
ylab="Corr. Coef.", figname=imbase + "_pvspec",
segments=freqs, cutoff=self.pvspec.noise() * self.getkey("numsigma"),
thumbnail=True)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno,
relative=True)
_caption = "Potential lines overlaid on Correlation plot from PVCorr_BDP."
image = Image(images={bt.SVG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=_caption)
llbdp.image.addimage(image, "pvspec")
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel,
imname, thumbnailname, _caption,
self.infile])
self._summary["linelist"] = SummaryEntry(llbdp.table.serialize(), "LineID_AT",
self.id(True), taskargs)
self._summary["spectra"] = [SummaryEntry(self.spec_description, "LineID_AT",
self.id(True), taskargs)]
self.addoutput(llbdp)
self.dt.tag("done")
self.dt.end()
return
tpeaks = {}
# do the peak finding
spnoise = []
# loop over all of the requested methods
for method, margs in self.getkey("method").iteritems():
logging.info("Searching for spectral peaks with method: %s" % (method))
tpeaks[method] = {"stats" : [],
"specs" : [],
"pvc" : None}
# look for peaks in the statspec data
for i, spec in enumerate(self.statspec):
logging.debug("Searching for spectral peaks statspec %d" % i)
args = {"spec" : spec.spec(),
"y" : spec.freq(),
"min_width" : self.getkey("minchan")}
args.update(margs)
args["thresh"] = float(spec.noise() * self.getkey("numsigma"))
pks = self.getpeaks(method, args, spec.spec(), self.statseg[i], iterate=self.getkey("iterate"))
tpeaks[method]["stats"].append(self.removepeaks(pks, self.statseg[i]))
# look for peaks in the cubespec data
for i, spec in enumerate(self.specs):
logging.debug("Searching for spectral peaks specs %d" % i)
args = {"spec" : spec.spec(),
"y" : spec.freq(),
"min_width" : self.getkey("minchan")}
args.update(margs)
if margs["thresh"] == 0.0:
args["thresh"] = float(spec.noise() * self.getkey("numsigma"))
spnoise.append(args["thresh"])
pks = self.getpeaks(method, args, spec.spec(), self.specseg[i], iterate=self.getkey("iterate"))
tpeaks[method]["specs"].append(self.removepeaks(pks, self.specseg[i]))
# look for peaks in the pvcorr data
if self.pvspec is not None:
logging.debug("Searching for spectral peaks pvspec")
args = {"spec" : self.pvspec.spec(),
"y" : self.pvspec.freq(),
"min_width" : self.getkey("minchan")}
args.update(margs)
args["thresh"] = float(self.pvspec.noise() * self.getkey("numsigma"))
pks = self.getpeaks(method, args, self.pvspec.spec(), self.pvseg, iterate=False)
tpeaks[method]["pvc"] = self.removepeaks(pks, self.pvseg)
# now merge it all together into a single dictionary
allpeaks = {"stats" : [],
"specs" : [],
"pvc" : None}
# must be detected in at least 2 methods or ALL requested methods
mode = self.getkey("mode").upper()
logging.debug("merging all peaks for mode=%s" % mode)
# do the stats first
for i in range(len(self.statspec)):
fullstats = set()
statlist = []
for v in tpeaks.values():
statlist.append(v["stats"][i])
target = 0 # add everything that is unique
if len(self.getkey("method")) > 1:
if "ALL" in mode:
target = len(statlist)
elif "TWO" in mode:
target = 2
for j in range(len(statlist)):
for point in statlist[j]:
count = 0
for i in range(j + 1, len(statlist)):
for stat in statlist[i]:
if point - self.tol / 2.0 < stat < point + self.tol / 2.0:
count += 1
statlist[i].remove(stat)
break
if count >= target:
fullstats.add(point)
temp = sorted(fullstats)
allpeaks["stats"].append(temp)
havesomething = havesomething or len(temp) > 0
# then the spectra
if len(self.specs) != 0:
target = 0
if "TWO" in mode:
target = 2
for row in range(len(self.specs)):
fullspec = set()
speclist = []
for v in tpeaks.values():
speclist.append(v["specs"][row])
if "ALL" in mode:
target = len(speclist)
for j in range(len(speclist)):
for point in speclist[j]:
count = 0
for i in range(j + 1, len(speclist)):
for sp in speclist[i]:
if point - self.tol / 2.0 < sp < point + self.tol / 2.0:
count += 1
speclist[i].remove(sp)
break
if count >= target:
fullspec.add(point)
temp = sorted(fullspec)
allpeaks["specs"].append(temp)
havesomething = havesomething or len(temp) > 0
if self.pvspec is not None:
fullpvc = set()
pvclist = []
for spec, v in tpeaks.iteritems():
pvclist.append(v["pvc"])
target = 0 # add everything that is unique
if len(self.getkey("method")) > 1:
if "ALL" in mode:
target = len(pvclist)
elif "TWO" in mode:
target = 2
for j in range(len(pvclist)):
for point in pvclist[j]:
count = 0
for i in range(j + 1, len(pvclist)):
for pv in pvclist[i]:
if point - self.tol / 2.0 < pv < point + self.tol / 2.0:
count += 1
pvclist[i].remove(pv)
break
if count >= target:
fullpvc.add(point)
allpeaks["pvc"] = sorted(fullpvc)
havesomething = havesomething or len(allpeaks["pvc"]) > 0
# if nothing was detected
if not havesomething:
logging.warning("No lines detected by LineID.")
# regression: name, freq, ch0, ch1
if self.getkey("vlsr") > -999998.0:
t = "Rest"
else:
t = "Sky"
xlabel = "%s Frequency (GHz)" % (t)
# cubestats output
for i, spec in enumerate(self.statspec):
mult = 1.
if i == 1:
mult = -1.
myplot.makespec(x=spec.freq(), y=spec.spec(csub=False), chan=spec.chans(),
cutoff=(spec.contin() + mult * (spec.noise() * self.getkey("numsigma"))),
figname=imbase +"_statspec%i" % i, title="Line ID (vlsr=%.2f)" % self.vlsr,
xlabel=xlabel, lines={}, force=self.force, blends=[],
continuum=spec.contin(), ylabel=label[i],
thumbnail=True, references=line_ref)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
image = Image(images={bt.SVG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=caption[i])
llbdp.image.addimage(image, "statspec%i" % i)
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel, imname,
thumbnailname, caption[i], self.infile])
# cubespec output (1 for each input spectra, there could be many from a single BDP)
for i, spec in enumerate(self.specs):
myplot.makespec(x=spec.freq(), y=spec.spec(csub=False), chan=spec.chans(),
cutoff=spec.contin() + spnoise[i],
figname=imbase +"_spec%03d" % i,
title="Line ID (vlsr=%.2f)" % self.vlsr, xlabel=xlabel,
lines={}, force=self.force, blends=[],
continuum=spec.contin(), thumbnail=True,
references=line_ref)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno,
relative=True)
_caption = "Identified lines overlaid on input spectrum #%i." % (i)
image = Image(images={bt.SVG: imname},
thumbnail=thumbnailname, thumbnailtype=bt.PNG,
description=_caption)
llbdp.image.addimage(image, "spec%03d" % i)
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel, imname,
thumbnailname, _caption, self.infile])
if self.pvspec is not None:
myplot.makespec(x=self.pvspec.freq(), y=self.pvspec.spec(csub=False), chan=self.pvspec.chans(),
cutoff=self.pvcutoff,
figname=imbase + "_pvspec", title="Line ID (vlsr=%.2f)" % self.vlsr,
xlabel=xlabel, lines={}, force=self.force, blends=[],
continuum=[0.0] * len(self.pvspec), ylabel="Corr. Coeff.",
thumbnail=True, references=line_ref)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
_caption = "Identified lines overlaid on Correlation Coefficient plot from PVCorr_BDP."
image = Image(images={bt.SVG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=_caption)
llbdp.image.addimage(image, "pvspec")
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel, imname,
thumbnailname, _caption, self.infile])
self._summary["linelist"] = SummaryEntry(llbdp.table.serialize(), "LineID_AT",
self.id(True), taskargs)
self._summary["spectra"] = [SummaryEntry(self.spec_description, "LineID_AT",
self.id(True), taskargs)]
self.addoutput(llbdp)
self.dt.tag("nolines")
self.dt.end()
Peaks.reset()
# no lines detected
return
# do pattern matching
peaks = {"stats" : [],
"specs" : [],
"pvc" : None}
toomanypeaks = self.checkcount(allpeaks)
for i, spec in enumerate(self.statspec):
self.current = "CubeStat %i" % (i)
if self.pattern == "ON" or (self.pattern == "AUTO" and not toomanypeaks):
peaks["stats"].append(self.findpatterns(spec, allpeaks["stats"][i], self.statseg[i]))
else:
stpeaks = Peaks(spec=spec)
stpeaks.singles = allpeaks["stats"][i]
stpeaks.pairs = {}
stpeaks.segments = self.statseg[i]
peaks["stats"].append(stpeaks)
for i, spec in enumerate(self.specs):
self.current = "CubeSpec %i" % (i)
if self.pattern == "ON" or (self.pattern == "AUTO" and not toomanypeaks):
peaks["specs"].append(self.findpatterns(spec, allpeaks["specs"][i],
self.specseg[i]))
else:
sppeaks = Peaks(spec=spec)
sppeaks.singles = allpeaks["specs"][i]
sppeaks.pairs = {}
sppeaks.segments = self.specseg[i]
peaks["specs"].append(sppeaks)
if self.pvspec is not None:
pvpeaks = Peaks(spec=self.pvspec)
pvpeaks.singles = allpeaks["pvc"]
pvpeaks.segments = self.pvseg
pvpeaks.pairs = {}
peaks["pvc"] = pvpeaks
# now flatten the pattern to remove noise
mpattern = []
for i in range(len(self.statspec)):
mpattern += peaks["stats"][i].flatten(self.tol)
peaks["stats"][i].sort()
for i in range(len(self.specs)):
mpattern += peaks["specs"][i].flatten(self.tol)
peaks["specs"][i].sort()
if self.pvspec is not None:
mpattern += peaks["pvc"].flatten(self.tol)
peaks["pvc"].sort()
# initialize the output bdp
llist = []
foundsomething = False
# for each detected line search for an identity
if self.getkey("vlsr") > -999998.0:
t = "Rest"
else:
t = "Sky"
tier1, hfs = self.gettier1()
for i in range(len(self.statspec)):
peaks["stats"][i].converttofreq()
for i in range(len(peaks["specs"])):
peaks["specs"][i].converttofreq()
if self.pvspec is not None:
peaks["pvc"].converttofreq()
# start with the statspec
for i in range(len(self.statspec)):
drop = []
self.identify(peaks["stats"][i], self.statspec[i].noise(), tier1, hfs, isstats=True)
# if at least 1 line was found, apply the results to the other spectra
if len(peaks["stats"][i].linelist) > 0:
foundsomething = True
for k, v in peaks["stats"][i].linelist.iteritems():
if v.getstart() <= self.getkey("minchan")/2 and k < peaks["stats"][i].getfreq(v.getstart()):
drop.append(k)
elif v.getend() >= (len(peaks["stats"][i].spec) - self.getkey("minchan")/2) and \
k > peaks["stats"][i].getfreq(v.getend()):
drop.append(k)
for d in drop:
del peaks["stats"][i].linelist[d]
peaks["stats"][i].validatelinesegments()
for i in range(len(peaks["specs"])):
self.identify(peaks["specs"][i], self.specs[i].noise(), tier1, hfs)
if len(peaks["specs"][i].linelist) > 0 and foundsomething is False:
foundsomething = True
drop = []
for k, v in peaks["specs"][i].linelist.iteritems():
if v.getstart() <= self.getkey("minchan") / 4 and \
k < min(peaks["specs"][i].getfreq(v.getstart()),
peaks["specs"][i].getfreq(v.getend())):
drop.append(k)
elif v.getend() >= (len(peaks["specs"][i].spec) - self.getkey("minchan") / 4) \
and k > max(peaks["specs"][i].getfreq(v.getstart()),
peaks["specs"][i].getfreq(v.getend())):
drop.append(k)
for d in drop:
del peaks["specs"][i].linelist[d]
peaks["specs"][i].validatelinesegments()
if self.pvspec is not None:
self.identify(peaks["pvc"], self.pvspec.noise(), tier1, hfs, ispvcorr=True)
peaks["pvc"].validatelinesegments()
# check through all lines:
# 1. Unidentified lines cannot overlap with identified lines
# 2. One line cannot be fully indside of another line, unless forced
done = False
loopcount = 0
while not done and loopcount < 3:
done = True
for i, spec in enumerate(peaks["specs"]):
for line in spec.linelist.values():
for j in range(i + 1, len(peaks["specs"])):
for sline in peaks["specs"][j].linelist.values():
lo = False
ro = False
env = False
if sline.getstart() <= line.getstart() <= sline.getend():
lo = True
if sline.getstart() <= line.getend() <= sline.getend():
ro = True
if line.getstart() <= sline.getstart() <= line.getend() and\
line.getstart() <= sline.getend() <= line.getend():
env = True
# Ulines cannot overlap with identified lines
if "Ukn" in line.getkey("name") and "Ukn" not in sline.getkey("name") and (lo or ro):
done = False
poffset = utils.freqtovel(sline.getkey("frequency"), line.getkey("frequency") - sline.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : sline.getkey("name"),
"transition" : sline.getkey("transition"),
"uid" : sline.getkey("uid"),
"formula" : sline.getkey("formula"),
"energies" : sline.getkey("energies"),
"linestrength" : sline.getkey("linestrength"),
"frequency" : sline.getkey("frequency"),
"mass" : sline.getkey("mass"),
"plain" : sline.getkey("plain"),
"isocount" : sline.getkey("isocount"),
"hfnum" : sline.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
line.setkey(data)
elif ("Ukn" in sline.getkey("name") and "Ukn" not in line.getkey("name") and (lo or ro)) or (env and (sline.getkey("transition") != line.getkey("transition") or sline.getkey("formula") != line.getkey("formula"))):
done = False
poffset = utils.freqtovel(line.getkey("frequency"), sline.getkey("frequency") - line.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : line.getkey("name"),
"transition" : line.getkey("transition"),
"uid" : line.getkey("uid"),
"formula" : line.getkey("formula"),
"energies" : line.getkey("energies"),
"linestrength" : line.getkey("linestrength"),
"frequency" : line.getkey("frequency"),
"mass" : line.getkey("mass"),
"plain" : line.getkey("plain"),
"isocount" : line.getkey("isocount"),
"hfnum" : line.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
sline.setkey(data)
for stat in peaks["stats"]:
for ll, sline in stat.linelist.iteritems():
lo = False
ro = False
env = False
if sline.getstart() <= line.getstart() <= sline.getend():
lo = True
if sline.getstart() <= line.getend() <= sline.getend():
ro = True
if line.getstart() <= sline.getstart() <= line.getend() and\
line.getstart() <= sline.getend() <= line.getend():
env = True
# Ulines cannot overlap with identified lines
if "Ukn" in line.getkey("name") and "Ukn" not in sline.getkey("name") and (lo or ro):
done = False
poffset = utils.freqtovel(sline.getkey("frequency"), line.getkey("frequency") - sline.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : sline.getkey("name"),
"transition" : sline.getkey("transition"),
"uid" : sline.getkey("uid"),
"formula" : sline.getkey("formula"),
"energies" : sline.getkey("energies"),
"linestrength" : sline.getkey("linestrength"),
"frequency" : sline.getkey("frequency"),
"mass" : sline.getkey("mass"),
"plain" : sline.getkey("plain"),
"isocount" : sline.getkey("isocount"),
"hfnum" : sline.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
line.setkey(data)
elif ("Ukn" in sline.getkey("name") and "Ukn" not in line.getkey("name") and (lo or ro)) or (env and (sline.getkey("transition") != line.getkey("transition") or sline.getkey("formula") != line.getkey("formula"))):
done = False
poffset = utils.freqtovel(line.getkey("frequency"), sline.getkey("frequency") - line.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : line.getkey("name"),
"transition" : line.getkey("transition"),
"uid" : line.getkey("uid"),
"formula" : line.getkey("formula"),
"energies" : line.getkey("energies"),
"linestrength" : line.getkey("linestrength"),
"frequency" : line.getkey("frequency"),
"mass" : line.getkey("mass"),
"plain" : line.getkey("plain"),
"isocount" : line.getkey("isocount"),
"hfnum" : line.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
sline.setkey(data)
if peaks["pvc"] is not None:
for sline in peaks["pvc"].linelist.values():
lo = False
ro = False
env = False
if sline.getstart() <= line.getstart() <= sline.getend():
lo = True
if sline.getstart() <= line.getend() <= sline.getend():
ro = True
if line.getstart() <= sline.getstart() <= line.getend() and\
line.getstart() <= sline.getend() <= line.getend():
env = True
# Ulines can overlap
if "Ukn" in line.getkey("name") and "Ukn" not in sline.getkey("name") and (lo or ro) and not line.getkey("force"):
done = False
poffset = utils.freqtovel(sline.getkey("frequency"), line.getkey("frequency") - sline.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : sline.getkey("name"),
"transition" : sline.getkey("transition"),
"uid" : sline.getkey("uid"),
"formula" : sline.getkey("formula"),
"energies" : sline.getkey("energies"),
"linestrength" : sline.getkey("linestrength"),
"frequency" : sline.getkey("frequency"),
"mass" : sline.getkey("mass"),
"plain" : sline.getkey("plain"),
"isocount" : sline.getkey("isocount"),
"hfnum" : sline.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
line.setkey(data)
elif (("Ukn" in sline.getkey("name") and "Ukn" not in line.getkey("name") and (lo or ro)) or (env and (sline.getkey("transition") != line.getkey("transition") or sline.getkey("formula") != line.getkey("formula")))) and not sline.getkey("force"):
done = False
poffset = utils.freqtovel(line.getkey("frequency"), sline.getkey("frequency") - line.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : line.getkey("name"),
"uid" : line.getkey("uid"),
"transition" : line.getkey("transition"),
"formula" : line.getkey("formula"),
"energies" : line.getkey("energies"),
"linestrength" : line.getkey("linestrength"),
"frequency" : line.getkey("frequency"),
"mass" : line.getkey("mass"),
"plain" : line.getkey("plain"),
"isocount" : line.getkey("isocount"),
"hfnum" : line.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
sline.setkey(data)
for spec in peaks["stats"]:
for line in spec.linelist.values():
for j in range(i + 1, len(peaks["specs"])):
for sline in peaks["specs"][j].linelist.values():
lo = False
ro = False
env = False
if sline.getstart() <= line.getstart() <= sline.getend():
lo = True
if sline.getstart() <= line.getend() <= sline.getend():
ro = True
if line.getstart() <= sline.getstart() <= line.getend() and\
line.getstart() <= sline.getend() <= line.getend():
env = True
# Ulines cannot overlap with identified lines
if "Ukn" in line.getkey("name") and "Ukn" not in sline.getkey("name") and (lo or ro):
done = False
poffset = utils.freqtovel(sline.getkey("frequency"), line.getkey("frequency") - sline.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : sline.getkey("name"),
"transition" : sline.getkey("transition"),
"uid" : sline.getkey("uid"),
"formula" : sline.getkey("formula"),
"energies" : sline.getkey("energies"),
"linestrength" : sline.getkey("linestrength"),
"frequency" : sline.getkey("frequency"),
"mass" : sline.getkey("mass"),
"plain" : sline.getkey("plain"),
"isocount" : sline.getkey("isocount"),
"hfnum" : sline.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
line.setkey(data)
elif ("Ukn" in sline.getkey("name") and "Ukn" not in line.getkey("name") and (lo or ro)) or (env and (sline.getkey("transition") != line.getkey("transition") or sline.getkey("formula") != line.getkey("formula"))):
done = False
poffset = utils.freqtovel(line.getkey("frequency"), sline.getkey("frequency") - line.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : line.getkey("name"),
"transition" : line.getkey("transition"),
"uid" : line.getkey("uid"),
"formula" : line.getkey("formula"),
"energies" : line.getkey("energies"),
"linestrength" : line.getkey("linestrength"),
"frequency" : line.getkey("frequency"),
"mass" : line.getkey("mass"),
"plain" : line.getkey("plain"),
"isocount" : line.getkey("isocount"),
"hfnum" : line.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
sline.setkey(data)
for stat in peaks["specs"]:
for sline in stat.linelist.values():
lo = False
ro = False
env = False
if sline.getstart() <= line.getstart() <= sline.getend():
lo = True
if sline.getstart() <= line.getend() <= sline.getend():
ro = True
if line.getstart() <= sline.getstart() <= line.getend() and\
line.getstart() <= sline.getend() <= line.getend():
env = True
# Ulines cannot overlap with identified lines
if "Ukn" in line.getkey("name") and "Ukn" not in sline.getkey("name") and (lo or ro):
done = False
poffset = utils.freqtovel(sline.getkey("frequency"), line.getkey("frequency") - sline.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : sline.getkey("name"),
"transition" : sline.getkey("transition"),
"uid" : sline.getkey("uid"),
"formula" : sline.getkey("formula"),
"energies" : sline.getkey("energies"),
"linestrength" : sline.getkey("linestrength"),
"frequency" : sline.getkey("frequency"),
"mass" : sline.getkey("mass"),
"plain" : sline.getkey("plain"),
"isocount" : sline.getkey("isocount"),
"hfnum" : sline.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
line.setkey(data)
elif ("Ukn" in sline.getkey("name") and "Ukn" not in line.getkey("name") and (lo or ro)) or (env and (sline.getkey("transition") != line.getkey("transition") or sline.getkey("formula") != line.getkey("formula"))):
done = False
poffset = utils.freqtovel(line.getkey("frequency"), sline.getkey("frequency") - line.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : line.getkey("name"),
"transition" : line.getkey("transition"),
"uid" : line.getkey("uid"),
"formula" : line.getkey("formula"),
"energies" : line.getkey("energies"),
"linestrength" : line.getkey("linestrength"),
"frequency" : line.getkey("frequency"),
"mass" : line.getkey("mass"),
"plain" : line.getkey("plain"),
"isocount" : line.getkey("isocount"),
"hfnum" : line.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
sline.setkey(data)
if peaks["pvc"] is not None:
for sline in peaks["pvc"].linelist.values():
lo = False
ro = False
env = False
if sline.getstart() <= line.getstart() <= sline.getend():
lo = True
if sline.getstart() <= line.getend() <= sline.getend():
ro = True
if line.getstart() <= sline.getstart() <= line.getend() and\
line.getstart() <= sline.getend() <= line.getend():
env = True
# Ulines can overlap
if "Ukn" in line.getkey("name") and "Ukn" not in sline.getkey("name") and (lo or ro) and not line.getkey("force"):
done = False
poffset = utils.freqtovel(sline.getkey("frequency"), line.getkey("frequency") - sline.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : sline.getkey("name"),
"uid" : sline.getkey("uid"),
"formula" : sline.getkey("formula"),
"energies" : sline.getkey("energies"),
"linestrength" : sline.getkey("linestrength"),
"frequency" : sline.getkey("frequency"),
"mass" : sline.getkey("mass"),
"plain" : sline.getkey("plain"),
"isocount" : sline.getkey("isocount"),
"hfnum" : sline.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
elif (("Ukn" in sline.getkey("name") and "Ukn" not in line.getkey("name") and (lo or ro)) or (env and (sline.getkey("transition") != line.getkey("transition") or sline.getkey("formula") != line.getkey("formula")))) and not sline.getkey("force"):
done = False
poffset = utils.freqtovel(line.getkey("frequency"), sline.getkey("frequency") - line.getkey("frequency"))
vel = poffset + self.vlsr
data = {"name" : line.getkey("name"),
"uid" : line.getkey("uid"),
"formula" : line.getkey("formula"),
"energies" : line.getkey("energies"),
"linestrength" : line.getkey("linestrength"),
"frequency" : line.getkey("frequency"),
"mass" : line.getkey("mass"),
"plain" : line.getkey("plain"),
"isocount" : line.getkey("isocount"),
"hfnum" : line.getkey("hfnum"),
"peakoffset" : poffset,
"velocity" : vel
}
loopcount += 1
for i in range(len(self.statspec)):
ulist = []
mlist = []
for v in peaks["stats"][i].linelist.values():
v.setkey("peakrms", float(np.max(self.statspec[i].spec()[v.getstart():v.getend() + 1])))
v.setkey("peakintensity", float(v.getkey("peakrms") * self.statspec[i].noise()))
if "Ukn" in v.getkey("name"):
ulist.append(copy.deepcopy(v))
else:
mlist.append(copy.deepcopy(v))
# eliminate very close u lines
for k in range(len(ulist) - 1, -1, -1):
frq = ulist[k][1]
tol = abs(self.tol * (self.statspec[k].freq()[ulist[k].getstart()] -
self.statspec[k].freq()[ulist[k].getstart() + 1]))
for j in range(k - 1, -1, -1):
if ulist[j].getkey("frequency") - tol < frq < ulist[j].getkey("frequency") + tol:
ulist[j].setkey("chans", [self.chan[self.chan.index(min(ulist[j].getstart(), ulist[k].getstart()))],
self.chan[self.chan.index(max(ulist[j].getend(), ulist[k].getend()))]])
ulist[j].setkey("freqs", [self.freq[self.chan.index(ulist[j].getstart())],
self.freq[self.chan.index(ulist[j].getend())]])
del ulist[i]
break
# eliminate doubles
for k in range(len(mlist) - 1, -1, -1):
uid = mlist[k].getkey("uid")
qn = mlist[k].getkey("transition")
for j in range(k - 1, -1, -1):
if uid == mlist[j].getkey("uid") and qn == mlist[j].getkey("transition"):
mlist[j].setkey("chans", [self.chan[self.chan.index(min(mlist[j].getstart(), mlist[k].getstart()))],
self.chan[self.chan.index(max(mlist[j].getend(), mlist[k].getend()))]])
mlist[j].setkey("freqs", [self.freq[self.chan.index(mlist[j].getstart())],
self.freq[self.chan.index(mlist[j].getend())]])
del mlist[k]
break
mlist += ulist
xlabel = "%s Frequency (GHz)" % (t)
mult = 1.
if i == 1:
mult = -1.
myplot.makespec(x=self.statspec[i].freq(), y=self.statspec[i].spec(csub=False),
chan=self.statspec[i].chans(),
cutoff=(self.statspec[i].contin() + mult * (self.statspec[i].noise() *
self.getkey("numsigma"))),
figname=imbase + "_statspec%i" % i, title="Line ID (vlsr=%.2f)" % self.vlsr,
xlabel=xlabel, lines=mlist, force=self.force,
blends=peaks["stats"][i].blends, continuum=self.statspec[i].contin(),
ylabel=label[i], thumbnail=True, references=line_ref)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
image = Image(images={bt.SVG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=caption[i])
llbdp.image.addimage(image, "statspec%i" % i)
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel, imname, thumbnailname,
caption[i], self.infile])
for i in range(len(peaks["specs"])):
ulist = []
mlist = []
for v in peaks["specs"][i].linelist.values():
v.setkey("peakintensity", float(np.max(self.specs[i].spec()[v.getstart():v.getend() + 1])))
v.setkey("peakrms", float(v.getkey("peakintensity") / self.specs[i].noise()))
if "Ukn" in v.getkey("name"):
ulist.append(copy.deepcopy(v))
else:
mlist.append(copy.deepcopy(v))
# eliminate very close u lines
for i in range(len(ulist) - 1, -1, -1):
frq = ulist[i][1]
tol = abs(self.tol * (self.specs[i].freq()[ulist[i].getstart()] -
self.specs[i].freq()[ulist[i].getstart() + 1]))
for j in range(i - 1, -1, -1):
if ulist[j].getkey("frequency") - tol < frq < ulist[j].getkey("frequency") + tol:
ulist[j].setkey("chans", [min(ulist[j].getstart(), ulist[i].getstart()),
max(ulist[j].getend(), ulist[i].getend())])
ulist[j].setkey("freqs", [self.freq[self.chan.index(ulist[j].getstart())],
self.freq[self.chan.index(ulist[j].getend())]])
del ulist[i]
break
# eliminate doubles
for k in range(len(mlist) - 1, -1, -1):
uid = mlist[k].getkey("uid")
qn = mlist[k].getkey("transition")
for j in range(k - 1, -1, -1):
if uid == mlist[j].getkey("uid") and qn == mlist[j].getkey("transition"):
mlist[j].setkey("chans", [min(mlist[j].getstart(), mlist[k].getstart()),
max(mlist[j].getend(), mlist[k].getend())])
mlist[j].setkey("freqs", [self.freq[self.chan.index(mlist[j].getstart())],
self.freq[self.chan.index(mlist[j].getend())]])
del mlist[k]
break
mlist += ulist
xlabel = "%s Frequency (GHz)" % (t)
myplot.makespec(x=self.specs[i].freq(), y=self.specs[i].spec(csub=False),
chan=self.specs[i].chans(),
cutoff=self.specs[i].contin() + (self.specs[i].noise() *
self.getkey("numsigma")),
figname=imbase + "_spec%03d" % i,
title="Line ID (vlsr=%.2f)" % self.vlsr, xlabel=xlabel, lines=mlist,
force=self.force, blends=peaks["specs"][i].blends,
continuum=self.specs[i].contin(), thumbnail=True, references=line_ref)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno,
relative=True)
_caption = "Identified lines overlaid on input spectrum #%i." % (i)
image = Image(images={bt.SVG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=_caption)
llbdp.image.addimage(image, "spec%03d" % i)
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel, imname, thumbnailname,
_caption, self.infile])
if self.pvspec is not None:
ulist = []
mlist = []
for v in peaks["pvc"].linelist.values():
v.setkey("peakintensity", float(np.max(self.pvspec.spec()[v.getstart():v.getend()+1])))
v.setkey("peakrms", float(v.getkey("peakintensity") / self.pvspec.noise()))
if "Ukn" in v.getkey("name"):
ulist.append(copy.deepcopy(v))
else:
mlist.append(copy.deepcopy(v))
# eliminate very close u lines
for i in range(len(ulist) - 1, -1, -1):
frq = ulist[i].getkey("frequency")
tol = abs(self.tol * (self.pvspec.freq()[ulist[i].getstart()] -
self.pvspec.freq()[ulist[i].getstart() + 1]))
for j in range(i - 1, -1, -1):
if ulist[j].getkey("frequency") - tol < frq < ulist[j].getkey("frequency") + tol:
ulist[j].setkey("chans", [min(ulist[j].getstart(), ulist[i].getstart()),
max(ulist[j].getend(), ulist[i].getend())])
ulist[j].setkey("freqs", [self.freq[self.chan.index(ulist[j].getstart())],
self.freq[self.chan.index(ulist[j].getend())]])
del ulist[i]
break
# eliminate doubles
for i in range(len(mlist) - 1, -1, -1):
uid = mlist[i].getkey("uid")
qn = mlist[i].getkey("transition")
for j in range(i - 1, -1, -1):
if uid == mlist[j].getkey("uid") and qn == mlist[j].getkey("transition"):
mlist[j].setkey("chans", [min(mlist[j].getstart(), mlist[i].getstart()),
max(mlist[j].getend(), mlist[i].getend())])
mlist[j].setkey("freqs", [self.freq[self.chan.index(mlist[j].getstart())],
self.freq[self.chan.index(mlist[j].getend())]])
del mlist[i]
break
mlist += ulist
xlabel = "%s Frequency (GHz)" % (t)
myplot.makespec(x=self.pvspec.freq(), y=self.pvspec.spec(csub=False), chan=self.pvspec.chans(),
cutoff=self.pvspec.noise() * self.getkey("numsigma"),
figname=imbase + "_pvspec", title="Line ID (vlsr=%.2f)" % self.vlsr,
xlabel=xlabel, lines=mlist, force=self.force, blends=peaks["pvc"].blends,
continuum=[0.0] * len(self.pvspec), ylabel="Correlation",
thumbnail=True, references=line_ref)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
_caption = "Identified lines overlaid on correlation coefficient plot from PVCorr_BDP."
image = Image(images={bt.SVG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=_caption)
llbdp.image.addimage(image, "pvspec")
self.spec_description.append([llbdp.ra, llbdp.dec, "", xlabel, imname, thumbnailname,
_caption, self.infile])
llist = []
# merge the results into a single list
for s in range(len(self.statspec)):
keylist = peaks["stats"][s].linelist.keys()
keylist.sort()
for key in keylist:
found = False
for i in range(len(llist)):
if llist[i].getkey("frequency") == peaks["stats"][s].linelist[key].getkey("frequency") and \
llist[i].getkey("transition") == peaks["stats"][s].linelist[key].getkey("transition"):
tt = [llist[i].getstart(), llist[i].getend(),
peaks["stats"][s].linelist[key].getstart(),
peaks["stats"][s].linelist[key].getend()]
llist[i].setkey("chans", [self.chan[self.chan.index(min(tt))],
self.chan[self.chan.index(max(tt))]])
llist[i].setkey("freqs", [self.freq[self.chan.index(min(tt))],
self.freq[self.chan.index(max(tt))]])
found = True
elif (i != 0 and llist[i - 1].getkey("frequency") < peaks["stats"][s].linelist[key].getkey("frequency") < llist[i].getkey("frequency")) or \
(i == 0 and peaks["stats"][s].linelist[key].getkey("frequency") < llist[i].getkey("frequency")):
llist.insert(i, peaks["stats"][s].linelist[key])
found = True
if not found:
llist.append(peaks["stats"][s].linelist[key])
for item in peaks["stats"][s].blends:
place = False
for i in range(len(llist)):
if (i != 0 and llist[i-1].getkey("frequency") < item.getkey("frequency") < llist[i].getkey("frequency")) or \
(i == 0 and item.getkey("frequency") < llist[i].getkey("frequency")):
place = True
break
if not place:
llist.append(item)
for ps in peaks["specs"]:
blendcheck = {}
for freq, v in ps.linelist.iteritems():
place = False
for i in range(len(llist)):
if (v.getkey("frequency") == llist[i].getkey("frequency") and \
v.getkey("transition") == llist[i].getkey("transition")) or \
("U" in v.getkey("uid") and v.getkey("uid") == llist[i].getkey("uid")):
place = True
llist[i].setkey("chans", [self.chan[self.chan.index(min(llist[i].getstart(), v.getstart()))],
self.chan[self.chan.index(max(llist[i].getend(), v.getend()))]])
llist[i].setkey("freqs", [self.freq[self.chan.index(llist[i].getstart())],
self.freq[self.chan.index(llist[i].getend())]])
if v.getkey("blend") > 0 and llist[i].getkey("blend") > 0:
blendcheck[v.getkey("blend")] = llist[i].getkey("blend")
elif v.getkey("blend") > 0:
llist[i].setkey("blend", v.getkey("blend"))
elif (i != 0 and llist[i - 1].getkey("frequency") < v.getkey("frequency") < llist[i].getkey("frequency")) or \
(i == 0 and v.getkey("frequency") < llist[i].getkey("frequency")):
llist.insert(i, v)
place = True
if not place:
llist.append(v)
# do the same for the blends, keep in mind the blendcheck
for blend in ps.blends:
place = False
for i in range(len(llist)):
if (i != 0 and llist[i - 1].getkey("frequency") < blend.getkey("frequency") < llist[i].getkey("frequency")) or \
(i == 0 and blend.getkey("frequency") < llist[i].getkey("frequency")):
if blend.getkey("blend") in blendcheck:
blend.setkey("blend", blendcheck[blend.getkey("blend")])
llist.insert(i, blend)
place = True
# if it is already there then just drop it
break
if blend.getkey("frequency") == llist[i].getkey("frequency") and \
blend.getkey("transition") == llist[i].getkey("transition"):
if llist[i].getkey("blend") == 0:
mindx = -1
bqn = ""
frq = 0.0
bls = blend.getkey("linestrength")
for j in ps.linelist.keys():
if ps.linelist[j].getkey("blend") == blend.getkey("blend") and \
ps.linelist[j].getkey("linestrength") > bls:
bqn = ps.linelist[j].getkey("transition")
frq = ps.linelist[j].getkey("frequency")
bls = ps.linelist[j].getkey("linestrength")
for j in range(len(llist)):
if llist[j].getkey("transition") == bqn:# and llist[j].getkey("frequency") == frq:
mindx = j
break
if mindx >= 0:
if llist[i].getend() > 0:
llist[mindx].setstart(self.chan[self.chan.index(min(llist[i].getstart(),
llist[mindx].getstart(),
blend.getstart()))])
llist[mindx].setend(self.chan[self.chan.index(max(llist[i].getend(),
llist[mindx].getend(),
blend.getend()))])
llist[mindx].setkey("freqs", [self.freq[self.chan.index(llist[mindx].getstart())],
self.freq[self.chan.index(llist[mindx].getend())]])
llist[i].setkey("blend", llist[mindx].getkey("blend"))
temp = {"blend" : llist[mindx].getkey("blend"),
"velocity" : 0.0,
"peakintensity" : 0.0,
"peakoffset" : 0.0,
"fwhm" : 0.0,
"peakrms" : 0.0}
llist[i].setkey(temp)
else:
mindx = -1
bqn = ""
bls = blend.getkey("linestrength")
# get the strongest one in the blend
for j in ps.linelist.keys():
if ps.linelist[j].getkey("blend") == blend.getkey("blend") and \
ps.linelist[j].getkey("linestrength") > bls:
bqn = ps.linelist[j].getkey("transition")
bls = ps.linelist[j].getkey("linestrength")
for j in range(len(llist)):
if llist[j].getkey("transition") == bqn:
mindx = j
break
if mindx >= 0:
if llist[i].getend() > 0:
llist[mindx].setstart(self.chan[self.chan.index(min(llist[i].getstart(),
llist[mindx].getstart()))])
llist[mindx].setend(self.chan[self.chan.index(max(llist[i].getend(),
llist[mindx].getend()))])
llist[mindx].setkey("freqs", [self.freq[self.chan.index(llist[mindx].getstart())],
self.freq[self.chan.index(llist[mindx].getend())]])
place = True
break
if not place:
if blend.getkey("blend") in blendcheck:
blend.setkey("blend", blendcheck[blend.getkey("blend")])
llist.append(blend)
if peaks["pvc"] is not None:
blendcheck = {}
for freq, v in peaks["pvc"].linelist.iteritems():
place = False
for i in range(len(llist)):
if (v.getkey("frequency") == llist[i].getkey("frequency") and \
v.getkey("transition") == llist[i].getkey("transition")) or \
("U" in v.getkey("uid") and v.getkey("uid") == llist[i].getkey("uid")):
place = True
llist[i].setkey("chans", [self.chan[self.chan.index(min(llist[i].getstart(), v.getstart()))],
self.chan[self.chan.index(max(llist[i].getend(), v.getend()))]])
llist[i].setkey("freqs", [self.freq[self.chan.index(llist[i].getstart())],
self.freq[self.chan.index(llist[i].getend())]])
if v.getkey("blend") > 0 and llist[i].getkey("blend") > 0:
blendcheck[v.getkey("blend")] = llist[i].getkey("blend")
elif v.getkey("blend") > 0:
llist[i].setkey("blend", v.getkey("blend"))
elif (i != 0 and llist[i-1].getkey("frequency") < v.getkey("frequency") < llist[i].getkey("frequency")) or \
(i == 0 and v.getkey("frequency") < llist[i].getkey("frequency")):
llist.insert(i, v)
place = True
if not place:
llist.append(v)
# do the same for the blends, keep in mind the blendcheck
for blend in peaks["pvc"].blends:
place = False
for i in range(len(llist)):
if (i != 0 and llist[i - 1].getkey("frequency") < blend.getkey("frequency") < llist[i].getkey("frequency")) or \
(i == 0 and blend.getkey("frequency") < llist[i].getkey("frequency")):
if blend.getkey("blend") in blendcheck:
blend.setkey("blend", blendcheck[blend.getkey("blend")])
llist.insert(i, blend)
place = True
# if it is already there then just modify it if necessary
if blend.getkey("frequency") == llist[i].getkey("frequency") and \
blend.getkey("transition") == llist[i].getkey("transition"):
if llist[i].getkey("blend") == 0:
mindx = -1
bqn = ""
bls = blend.getkey("linestrength")
# get the strongest one in the blend
for j in peaks["pvc"].linelist.keys():
if peaks["pvc"].linelist[j].getkey("blend") == blend.getkey("blend") and \
peaks["pvc"].linelist[j].getkey("linestrength") > bls:
bqn = peaks["pvc"].linelist[j].getkey("transition")
bls = peaks["pvc"].linelist[j].getkey("linestrength")
for j in range(len(llist)):
if llist[j].getkey("transition") == bqn:
mindx = j
break
if mindx >= 0:
if llist[i].getend() > 0:
llist[mindx].setstart(self.chan[self.chan.index(min(llist[i].getstart(),
llist[mindx].getstart(),
blend.getstart()))])
llist[mindx].setend(self.chan[self.chan.index(max(llist[i].getend(),
llist[mindx].getend(),
blend.getend()))])
llist[mindx].setkey("freqs", [self.freq[self.chan.index(llist[mindx].getstart())],
self.freq[self.chan.index(llist[mindx].getend())]])
llist[i].setkey("blend", llist[mindx].getkey("blend"))
temp = {"velocity" : 0.0,
"peakintensity" : 0.0,
"peakoffset" : 0.0,
"fwhm" : 0.0,
"peakrms" : 0.0}
temp["blend"] = llist[mindx].getkey("blend")
llist[i].setkey(temp)
else:
mindx = -1
bqn = ""
bls = blend.getkey("linestrength")
# get the strongest one in the blend
for j in peaks["pvc"].linelist.keys():
if peaks["pvc"].linelist[j].getkey("blend") == blend.getkey("blend") and \
peaks["pvc"].linelist[j].getkey("linestrength") > bls:
bqn = peaks["pvc"].linelist[j].getkey("transition")
bls = peaks["pvc"].linelist[j].getkey("linestrength")
for j in range(len(llist)):
if llist[j].getkey("transition") == bqn:
mindx = j
break
if mindx >= 0:
if llist[i].getend() > 0:
llist[mindx].setstart(self.chan[self.chan.index(min(llist[i].getstart(),
llist[mindx].getstart()))])
llist[mindx].setend(self.chan[self.chan.index(max(llist[i].getend(),
llist[mindx].getend()))])
llist[mindx].setkey("freqs", [self.freq[self.chan.index(llist[mindx].getstart())],
self.freq[self.chan.index(llist[mindx].getend())]])
temp = {"velocity" : 0.0,
"peakintensity" : 0.0,
"peakoffset" : 0.0,
"fwhm" : 0.0,
"peakrms" : 0.0}
temp["blend"] = llist[mindx].getkey("blend")
llist[i].setkey(temp)
place = True
if not place:
if blend.getkey("blend") in blendcheck:
blend.setkey("blend", blendcheck[blend.getkey("blend")])
llist.append(blend)
ulist = []
mlist = []
for l in llist:
if "Ukn" in l.getkey("name"):
ulist.append(l)
else:
mlist.append(l)
# eliminate very close u lines
for i in range(len(ulist) - 1, -1, -1):
frq = ulist[i].getkey("frequency")
tol = abs(self.tol * (self.freq[ulist[i].getstart()] - self.freq[ulist[i].getstart() + 1]))
for j in range(i - 1, -1, -1):
if ulist[j].getkey("frequency") - tol < frq < ulist[j].getkey("frequency") + tol:
del ulist[i]
break
mlist += ulist
for frc in self.force:
mlist.append(frc)
#mlist[0]
mlist.sort(key=lambda x: float(x.getkey("frequency")))
duplicate_lines = []
for m in mlist:
addon = ""
logging.log(logging.INFO, " Found line: " + m.getkey("formula") + " " + m.getkey("transition") +
" @ " + str(m.getkey("frequency")) + "GHz, channels " + str(m.getstart()) +
" - " + str(m.getend()) + addon)
if m.getkey('uid') in duplicate_lines:
logging.log(logging.WARNING, " Skipping duplicate UID: " + m.getkey("uid"))
continue
else:
duplicate_lines.append(m.getkey('uid'))
llbdp.addRow(m)
logging.regression("LINEID: %s %.5f %d %d" % (m.getkey("formula"), m.getkey("frequency"),
m.getstart(), m.getend()))
# Need to adjust plot DPI = 72 for SVG; stick to PNG for now...
myplot._plot_type = admit.util.PlotControl.PNG
myplot._plot_mode = admit.util.PlotControl.NONE
myplot.summaryspec(self.statspec, self.specs, self.pvspec, imbase + "_summary", llist, force=self.force)
imname = myplot.getFigure(figno=myplot.figno, relative=True)
thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
_caption = "Identified lines overlaid on Signal/Noise plot of all spectra."
image = Image(images={bt.PNG: imname}, thumbnail=thumbnailname,
thumbnailtype=bt.PNG, description=_caption)
llbdp.image.addimage(image, "summary")
self.spec_description.append([llbdp.ra, llbdp.dec, "", "Signal/Noise", imname,
thumbnailname, _caption, self.infile])
# The plain ascii list may still be useful for regression testing
self._summary["linelist"] = SummaryEntry(llbdp.table.serialize(), "LineID_AT",
self.id(True), taskargs)
self._summary["spectra"